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In our first talk, we suggested an approach to blow ups from the point of
viev of classical algebraic geometry, and this approach is useful to get hands
dirty with blow ups. Now we would like to give a more modern approach to
the subject using the language of schemes. What we will discuss is a natural
generalization to what discussed so far.

1 Blow up of affine schemes: the blow up al-
gebra

Let A be a noetherian ring (commutative, with unit). Take an ideal I C A
and define the blow up algebra of A along I as:

Bl A = @I, where I’ := A.

d>0

The blow up algebra as an obvious structure of graded A-algebra. If ¢ is an
indeterminate over A it’s easy to see that there is an isomorphism of graded
A-algebras:

Bl A = A[It] = Alit|i € 1.

Now, if I = (go,...,9s), A[lt] = Alg;t|l7 = 0,...,s], which is nothing else
than the image of that morphism ¢ defined in the first talk (see [S]).
We define the blow up of X := Spec(A) along the subscheme V' (I) to be:

Blv([)X = PI‘Oj (BIIA),

together with the induced morphism o: BlynX — X. We want to remark
that Bly (X depends deeply on the scheme structure of V(/), and in next
section we’ll have a better intuition for this.



It’s interesting to see how algebraic properties of A and I reflect on the
geometry of the blow up (see [L, Lemma 8.1.2]). In particular we discuss the
following.

Proposition 1. Assume I = (a) with a € A regular element. Then Bly X =
X.

Why do we like this statement? Geometrically, it means that blowing up in
codimension 1 doesn’t give anything new. Let’s prove Proposition 1.

Proof. Since a is regular, BlyA = Alat] = Aft]. From [H, Chapter II,
Proposition 2.5(b)|, we know that:

D (t) = SpecA[t] .

But D, (t) = Proj(A[t]), because any homogeneous prime ideal p C Alt]
which not contain (t) is in D (t). Moreover A[t]) = A, because if x € A[t] ),
xr = O;L: for some n > 0 and o € A. We just proved that Bly X = X. [

2 Study of the behavior of the blow up at a
fat point

Here we want to work with the complex numbers. The motivation for this
section is the following. Let’s fix a base field k. We want to understand
what’s the difference between, say, Bly () A? and Bly(, ,2)A%. We know that
Bly (;,4)A® is regular. What about Bly(, ,2)A?? Using the computational tools
we introduced in [S], we get that:

Bly (5,2 A% = Z(Yoy® — Yiz) € A” x P,

where (Yp : Y7) are the homogeneous coordinates. Let’s fix this notation once
and for all:
_n Y
w = v z= v,
U = {((z,9), (Yo : V1)) € A x P'|Y; # 0},
Ur = {((z,y), (Yo : Y1)) € A* x P'[Y; # 0}.

So, we observe that in Uy, the equation of our blow up is y?> — wz = 0, which
is singular at (0,0,0) (or, in homogeneous coordinates, in ((0,0), (1 :0))).



The second natural question to ask is how Blv(x’yz)AQ behaves with the sep-
aration of tangent directions at the origin: more precisely we want to pick
two nonsingular curves through the origin, blow up along V' (z, 3?), compute
their strict transforms and see if they intersect along the exceptional divisor.
We'll go through several examples until we see a pattern.

e ©r =y and x = —y are not separated;

e © =0 and y = ax are separated (so, let’s stick to the tangent direction
x = 0 but let’s rise the multiplicity of intersection);

e 2 =0 and z = y? are separated (let’s rise again the multiplicity);
e v =0 and z = y? are not separated:;

We can state now a general result. (Note: in the propositions that follow, if
we take a curve C' we are implicitly assuming that C' is different from x = 0.)

Proposition 2. Fiz a positive integer e and an irreducible nonsingular curve
C in A? such that the multiplicity of intersection of C with the linel:xz=0
at (0,0) is less or equal than e. Then, if we consider Blv(x,ye)AQ, CNINE = 0.

Proof. Let f(x,y) be the polynomial whose zero set is C'. Since C' is nonsin-
gular and (0,0) € C, then the cone of C' is in the form cz for some ¢ # 0.
Since 0, f(x,y)|0,0 = ¢, we can use the implicit function theorem and say
that C' is locally described at (0,0) by = = g(y). If we expand g at zero we
get:

x = ay® + higher degree terms,

where a is the multiplicity of intersection of C' with [. Therefore we can
assume that C': z = ay®.
Now if we look at Uy, the preimage of C' has equations:

T = oy’
2y¢ —r=0= 29— ay® =0,

and hence C' must satisfy:

T = ay®
2y % —a = 0.

The preimage of the line [ is described by:

x=0
2yt —x=0= 2y =0,
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and the strict transform I satisfies:

z=0
z =0,
Now if 7 and C intersect along E, (0,0,0) must be the intersection point. But

it’s obvious that (0,0,0) ¢ C because a # 0. O

Working with similar ideas, we can generalize previous result to the case in
which z = 0 can be any other irreducible nonsingular curve through (0,0)
with tangent direction z = 0.

Proposition 3. Fix a positive integer e. Take two irreducible nonsingular
curves Cp, Cy which pass through the origin with tangent direction | : x =0
and e > mo0)(Ch N 1) # mo(CoNl) < e. Then, if we consider Bly e A%,
CinCyNE=§.

Proof. Doing a reduction similar to the one we did in previous proposition,
we can assume WLOG that:

Cy:x=ay?, Cy:x =By

Let’s check the statement in U;. The preimage of C'; has equations:

T = oy’
2y —r=0= 29— ay® =0,

therefore 61 has equations:

T = oy’
2y = a.

Similarly, the strict transform of C5 has equations:

x =By’
270 = B.

Now at least one between e — a,e — b # 0, say e — b # 0. So, if we have any
intersection point along FE, this should have z = y = 0 = [ = 0, and this
can’t be. O

Obviously, up to a suitable translation and rotation, we have the same results
for the blow up at any point in A? and with any chosen tangent direction at
that point.



The “innatural” hypothesis m ) (C1 N1) # mo,0)(C2 N1) is necessary, oth-
erwise the thesis is false in some cases. For instance take:

C’l:x:y2, C’Q:m:y2+y3,

and blow up along V(x,4?). They both intersect x = 0 at (0,0) with mul-
teplicity 2, but if we blow up the strict transforms intersect in (0,0,1) € F
in the chart Uj.

Work in progress: properties of the blow up of k[z,y] along (22, 3?). We
observe just that the whole exceptional divisor is singular.

Observation 1. What about the blow up of k[z,y] along (z,y)?? Well,
Bly (2.2 A% = Bly(,, A% Actually, we can state a more general result: for
any ring A, any ideal I C A and any n > 1, we have that:

Bl;A = Bl A.

To see this it is equivalent to prove the following. Let S = €., 5S4 be a
graded A-algebra and, for any integer e > 1, let S®) be the graded A-algebra
with grading:

S(ge) =S, for d > 0.

Then Proj(S®)) = Proj(9).

3 Universal property of the blow up

Now we want to state the universal property that the blow up satisfies, but
we want to state this not just for noetherian affine schemes: we want to
deal with a general noetherian scheme. More precisely, if earlier we blew up
Spec(A) with A noetherian ring along a closed subscheme V (1), now we want
to blow up a noetherian scheme X along a closed subscheme Y. Giving a
closed subscheme Y is equivalent to give a quasi-coherent sheaf of ideals .#
over X, and since X is noetherian, it happens that .# is coherent. Conversely
a coherent sheaf of ideals on X define a closed subscheme Y C X. So we
want to blow up X along a coherent sheaf of ideals .#. We need to refresh
the following definition.

Definition 1. Let f: Z — X be a morphism of schemes and let .# be a
sheaf of ideals on X. Define the inverse image ideal sheaf f~*.% - Oy on Z
as follows. Obviously f~!.# is a sheaf of ideals in f~10x. f = (f, ) with



f#: Ox — f.05 which correspond bijectively to a morphism f*: f~10x —
O,. Hence we can take f~'.¢ - 0, to be the the sheaf of ideals in Oy
generated by f~'.#. The subscheme of Z that this new ideal sheaf define
can be identified with the fiber product Z xx Y, if Y C X is the closed
subscheme of X defined by .#.

Next theorem/definition will inclose the definition of blow up together with
its universal property.

Theorem/Definition 1. Given a noetherian scheme X and a coherent sheaf

of ideals . , there exists another scheme X together with a morphism o : X —
X such that:

o 0717 - O € Pic(X);

e given any other morphism of schemes f: Z — X such thath_lf - Oy
15 invertible, then there exists a unique morphism g: Z — X such that
the diagram:

commutes.

Such a scheme X is unique up to isomorphism and is called the blow up of
X along .#.

The uniqueness part is the usual consequence of the universal property.
About the construction of X see [H, Chapter II, page 160, Construction].
In the affine case it turns out that Bly ;) Spec(A) satisfy the stated univer-
sal property, and this is the only interesting case in which one has to prove
previous theorem.
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