Blowing up subvarieties

Luca Schaffler

Spring, 2013

Fix a base field k. Consider two Zariski closed subsets $Y \subseteq X \subseteq \mathbb{A}^r$ $(r \ge 1)$ with Y proper. Our aim is to define and understand the blow up of X along Y (in symbols, this will be $Bl_Y X$). Blow ups are important, for example they're used to:

- study rational morphisms;
- study singular curves;
- classify algebraic surfaces;
- build compactifications of moduli spaces of points.

The definition we give of blow up is taken from [J].

Acknowledgements: Thanks to Adrian Brunyate and Abraham Varghese for useful discussions and suggestions.

1 Motivating example

Let's build the blow up in a particular case to give an idea about this. In next section, we will generalize the construction. Take $k = \mathbb{R}$, r = 2, $X = \mathbb{A}^2$ and $Y = \{(0,0)\}$. The blow up of \mathbb{A}^2 at (0,0) is the Zariski closed subset:

$$\{((x,y),(u:v))\in \mathbb{A}^2\times \mathbb{P}^1|xv=yu\},$$

together with the projection map $\sigma((x, y), (u : v)) = (x, y)$. We give a picture of this.

2 The construction

Let J be the ideal in $k[x_1, \ldots, x_r]$ corresponding to Y (i.e., Y = Z(J)). Let $\{g_0, \ldots, g_s\}$ be a finite set of generators for J, whose existence is guaranteed by Hilbert's Basissatz. Consider the following rational map:

$$\varphi \colon \mathbb{A}^r \dashrightarrow \mathbb{P}^s \text{ s.t.}$$
$$p \mapsto (g_0(p) : \ldots : g_s(p)).$$

Obviously, φ is not defined on Y by our construction. Let Γ_{φ} be the graph of φ . Explicitly:

$$\Gamma_{\varphi} = \{ (p, \varphi(p)) | p \in X \setminus Y \} \subseteq \mathbb{A}^r \times \mathbb{P}^s.$$

Finally, call σ the restriction of the projection $\mathbb{A}^r \times \mathbb{P}^s \to \mathbb{A}^r$ to the Zariski closure of Γ_{φ} . Now it's all set to give our definition of blow up.

Definition 1. We'll define $\operatorname{Bl}_Y X$ to be the Zariski closed subset $\overline{\Gamma}_{\varphi} \subseteq \mathbb{A}^r \times \mathbb{P}^s$ together with the projection map $\sigma \colon \overline{\Gamma}_{\varphi} \to \mathbb{A}^r$. $E := \sigma^{-1}(Y) \subseteq \operatorname{Bl}_Y X$ is called the *exceptional divisor*.

3 First properties of the blow up

Here we list the first properties of the blow up. For simplicity of notation, define $Z := Bl_Y X$.

Proposition 1.

- (i) σ is a closed map;
- (ii) $\sigma(Z) = X;$
- (iii) $Z \setminus E = \Gamma_{\varphi}$, or equivalently $Z = \Gamma_{\varphi} \coprod E$;
- (iv) $\sigma|_{Z\setminus E}$ is an isomorphism, in particular $Z\setminus E$ and $X\setminus Y$ are birationally equivalent.

Proof.

- (i) This is a consequence of [S, Chapter I, Section 5.2, Theorem 3], which is a pretty (basic) important statement.
- (ii) Obviously, $\sigma(\Gamma_{\varphi}) = X \setminus Y \Rightarrow \overline{\sigma(\Gamma_{\varphi})} = X$. But σ is closed, therefore $\overline{\sigma(\Gamma_{\varphi})} = \sigma(\overline{\Gamma_{\varphi}}) = \sigma(Z) = X$.

(iii) $(p,q) \in \Gamma_{\varphi} \Rightarrow p \in X \setminus Y \Rightarrow (p,q) \notin E.$

Conversely, let $(p,q) \in Z \setminus E$. Assume by contradiction that $(p,q) \notin \Gamma_{\varphi}$. By previous point, $p \in X$, but $p \notin Y$, otherwise $(p,q) \in E$. So, $p \in X \setminus Y$ and $q \neq \varphi(p)$. Let $U \subseteq Z$ be the open nonempty subset of all such points (p,q). Explicitly:

$$U := \{ (p,q) \in Z | p \in X \setminus Y \text{ and } q \neq \varphi(p) \}.$$

Since Γ_{φ} is dense in Z, $\Gamma_{\varphi} \cap U \neq \emptyset$, and this can't be.

(iv) The regular map $X \setminus Y \to Z \setminus E = \Gamma_{\varphi}$ s.t. $p \mapsto (p, \varphi(p))$ is obviously the inverse of $\sigma|_{Z \setminus E}$.

What we wanted to remark in previous proposition is that the exceptional divisor is exactly what we add to Γ_{φ} in order to get the closure Z.

At this point, since Z is a Zariski closed subset of $\mathbb{A}^r \times \mathbb{P}^s$, it's natural to ask who are the polynomials that determine Z. Let's introduce some notation. Let $I \subseteq k[x_1, \ldots, x_r]$ be the ideal such that X = Z(I). Call \overline{x}_i the class of x_i modulo I, $i = 1, \ldots, r$, and define $R := k[x_1, \ldots, x_r]/I$. Lastly, if t is an indeterminate over R, define $\psi : k[x_1, \ldots, x_r, Y_0, \ldots, Y_s] \to R[t]$ to be the homomorphism of k-algebras obtained by extending $x_i \mapsto \overline{x}_i$ and $Y_j \mapsto g_j(\overline{x})t, i = 1, \ldots, r, j = 0, \ldots, s$. Of course, ψ can be viewed as a morphism of graded algebras in the following way: assign degree zero to the elements of $k[x_1, \ldots, x_r]$, R and assign degree 1 to Y_0, \ldots, Y_s, t . Since by definition ψ preserves the degree, we have a morphism of graded algebras. In particular, $\operatorname{Ker}(\psi)$ will be a homogeneous ideal in the variables Y_0, \ldots, Y_s (this is easy to be proved). Therefore it makes sense to consider:

$$Z(\operatorname{Ker}(\psi)) \subseteq \mathbb{A}^r \times \mathbb{P}^s.$$

Then we have the following result.

Proposition 2. $Z(\text{Ker}(\psi)) = Z(=\text{Bl}_Y X = \overline{\Gamma}_{\varphi}).$

Proof.

 (\subseteq) We will prove that $Z(\operatorname{Ker}(\psi)) \setminus E \subseteq \Gamma_{\varphi}$, which implies $Z(\operatorname{Ker}(\psi)) \subseteq Z$. Pick $(p,q) \in Z(\operatorname{Ker}(\psi)) \setminus E$. Hence $p \notin Y$, and therefore we can assume WLOG that $g_0(p) \neq 0$. We observe that trivially:

$$(Y_ig_j - Y_jg_i|i, j = 0, \dots, s) \subseteq \operatorname{Ker}(\psi).$$

In particular, if $q = (q_0 : \ldots : q_s)$, we have the following equalities:

$$q_i = \frac{q_0}{g_0(p)} g_i(p), \ i = 0, \dots, s,$$

and in particular $q_0 \neq 0$. Therefore:

$$q = (q_0 : \ldots : q_s) = \left(\frac{q_0}{g_0(p)}g_0(p) : \ldots : \frac{q_0}{g_0(p)}g_s(p)\right) = \varphi(p) \Rightarrow$$
$$(p,q) = (p,\varphi(p)) \in \Gamma_{\varphi}.$$

 (\supseteq) It's enough to prove that $\Gamma_{\varphi} \subseteq Z(\operatorname{Ker}(\psi))$. So, pick $(p, \varphi(p)) \in \Gamma_{\varphi}$. We have to show that given $f \in \operatorname{Ker}(\psi)$, $f(p, \varphi(p)) = 0$. Since $\operatorname{Ker}(\psi)$ is homogeneous in Y_0, \ldots, Y_s , for our purpose we can assume f to be homogeneous in Y_0, \ldots, Y_s of degree d. If briefly $x := (x_1, \ldots, x_r)$ and $\overline{x} := (\overline{x}_1, \ldots, \overline{x}_r)$, we have that:

$$0 = \psi(f) = f(\overline{x}, g_0(\overline{x})t, \dots, g_s(\overline{x})t) = f(\overline{x}, g_0(\overline{x}), \dots, g_s(\overline{x}))t^d \Rightarrow$$
$$f(\overline{x}, g_0(\overline{x}), \dots, g_s(\overline{x})) = 0 \Rightarrow f \in I \Rightarrow f(p, g_0(p), \dots, g_s(p)) = 0,$$

which means that $(p, \varphi(p)) \in Z(\operatorname{Ker}(\psi))$.

Now that we're familiar with the construction of the blow up, we make some additional observations.

Observation 1. In the construction of the blow up, if we take \mathbb{P}^r instead of \mathbb{A}^r , nothing changes at all. We just have to consider homogeneous generators $\{G_0, \ldots, G_s\}$ for J and consider another rational map:

$$\Phi \colon \mathbb{P}^r \to \mathbb{P}^s \text{ s.t.}$$
$$p \mapsto (G_0(p) : \ldots : G_s(p)).$$

Everything else is the same.

Observation 2. The construction of the blow up doesn't depend on the choice of the generators for the ideal J. We mean that, if $J = (g'_0, \ldots, g'_{s'})$ and $\varphi'(p) := (g'_0(p) : \ldots : g'_{s'}(p))$, then:

$$\Gamma_{\varphi} \cong \Gamma_{\varphi'}.$$

4 A concrete example: blowing up a linear subspace

Let $X := \mathbb{A}^r$ and let $Y \subseteq X$ be a linear subspace of dimension $0 \leq d < r$. WLOG, we can assume that Y is the following linear subspace:

$$\begin{cases} x_1 = 0 \\ \vdots \\ x_{r-d} = 0 \end{cases}$$

So, $Z = Bl_Y X = Z(Ker(\psi))$, where:

$$\psi \colon k[x_1, \dots, x_r, Y_0, \dots, Y_{r-d-1}] \to k[x_1, \dots, x_r][t] \text{ s.t.}$$
$$x_i \mapsto x_i, \ i = 1, \dots, r,$$
$$Y_i \mapsto x_{i+1}t, \ j = 0, \dots, r-d-1$$

and then extended (in particular s = r - d - 1). Define the following ideal in $k[x_1, \ldots, x_r, Y_0, \ldots, Y_{r-d-1}]$:

$$H = (Y_j x_{i+1} - Y_i x_{j+1} | i, j = 0, \dots, r - d - 1).$$

The problem now is to show that $H = \operatorname{Ker}(\psi)$. The containment $H \subseteq \operatorname{Ker}(\psi)$ is trivial. The other one is more subtle. Here we prove the case s = 1. Take $f \in \operatorname{Ker}(\psi)$ and we can assume f homogeneous in Y_0, Y_1 ($\operatorname{Ker}(\psi)$ is generated by such polynomials). We have that $f(x_1, \ldots, x_r; x_1, x_2) = 0$, therefore $(Y_0x_2 - Y_1x_1)$ divides $f(x_1, \ldots, x_r; Y_0, Y_1)$ as homogeneous polynomials with coefficients in $k[x_1, \ldots, x_r]$ and indeterminates Y_0, Y_1 , and we're done.

For an inductive proof of the other cases, here's the idea: by adding suitable monomials to f, we can get a new polynomial which depends on Y_0, \ldots, Y_{s-1} and whose class mod $\text{Ker}(\psi)$ is the same as f.

References

- [J] J. Harris. Algebraic Geometry, a First Course, Springer-Verlag, New York, 1992, Graduate Texts in Mathematics, 133.
- [S] I. R. Shafarevich. Basic Algebraic Geometry: Varieties in Projective Space, second edition. Springer-Verlag, 1994.