Blowing up subvarieties

Luca Schaffler

Spring, 2013

Fix a base field k. Consider two Zariski closed subsets $Y \subseteq X \subseteq \mathbb{A}^{r}(r \geq 1)$ with Y proper. Our aim is to define and understand the blow up of X along Y (in symbols, this will be $\mathrm{Bl}_{Y} X$). Blow ups are important, for example they're used to:

- study rational morphisms;
- study singular curves;
- classify algebraic surfaces;
- build compactifications of moduli spaces of points.

The definition we give of blow up is taken from [J].
Acknowledgements: Thanks to Adrian Brunyate and Abraham Varghese for useful discussions and suggestions.

1 Motivating example

Let's build the blow up in a particular case to give an idea about this. In next section, we will generalize the construction. Take $k=\mathbb{R}, r=2, X=\mathbb{A}^{2}$ and $Y=\{(0,0)\}$. The blow up of \mathbb{A}^{2} at $(0,0)$ is the Zariski closed subset:

$$
\left\{((x, y),(u: v)) \in \mathbb{A}^{2} \times \mathbb{P}^{1} \mid x v=y u\right\},
$$

together with the projection map $\sigma((x, y),(u: v))=(x, y)$. We give a picture of this.

2 The construction

Let J be the ideal in $k\left[x_{1}, \ldots, x_{r}\right]$ corresponding to Y (i.e., $Y=Z(J)$). Let $\left\{g_{0}, \ldots, g_{s}\right\}$ be a finite set of generators for J, whose existence is guaranteed by Hilbert's Basissatz. Consider the following rational map:

$$
\begin{aligned}
\varphi: \mathbb{A}^{r} & \longrightarrow \mathbb{P}^{s} \text { s.t. } \\
& p \mapsto\left(g_{0}(p): \ldots: g_{s}(p)\right) .
\end{aligned}
$$

Obviously, φ is not defined on Y by our construction. Let Γ_{φ} be the graph of φ. Explicitly:

$$
\Gamma_{\varphi}=\{(p, \varphi(p)) \mid p \in X \backslash Y\} \subseteq \mathbb{A}^{r} \times \mathbb{P}^{s}
$$

Finally, call σ the restriction of the projection $\mathbb{A}^{r} \times \mathbb{P}^{s} \rightarrow \mathbb{A}^{r}$ to the Zariski closure of Γ_{φ}. Now it's all set to give our definition of blow up.

Definition 1. We'll define $\mathrm{Bl}_{Y} X$ to be the Zariski closed subset $\bar{\Gamma}_{\varphi} \subseteq \mathbb{A}^{r} \times \mathbb{P}^{s}$ together with the projection map $\sigma: \bar{\Gamma}_{\varphi} \rightarrow \mathbb{A}^{r} . E:=\sigma^{-1}(Y) \subseteq \mathrm{Bl}_{Y} X$ is called the exceptional divisor.

3 First properties of the blow up

Here we list the first properties of the blow up. For simplicity of notation, define $Z:=\mathrm{Bl}_{Y} X$.

Proposition 1.

(i) σ is a closed map;
(ii) $\sigma(Z)=X$;
(iii) $Z \backslash E=\Gamma_{\varphi}$, or equivalently $Z=\Gamma_{\varphi} \coprod E$;
(iv) $\left.\sigma\right|_{Z \backslash E}$ is an isomorphism, in particular $Z \backslash E$ and $X \backslash Y$ are birationally equivalent.

Proof

(i) This is a consequence of $[\mathrm{S}$, Chapter I, Section 5.2, Theorem 3], which is a pretty (basic) important statement.
(ii) Obviously, $\sigma\left(\Gamma_{\varphi}\right)=X \backslash Y \Rightarrow \overline{\sigma\left(\Gamma_{\varphi}\right)}=X$. But σ is closed, therefore $\overline{\sigma\left(\Gamma_{\varphi}\right)}=\sigma\left(\overline{\Gamma_{\varphi}}\right)=\sigma(Z)=X$.
(iii) $(p, q) \in \Gamma_{\varphi} \Rightarrow p \in X \backslash Y \Rightarrow(p, q) \notin E$.

Conversely, let $(p, q) \in Z \backslash E$. Assume by contradiction that $(p, q) \notin \Gamma_{\varphi}$. By previous point, $p \in X$, but $p \notin Y$, otherwise $(p, q) \in E$. So, $p \in X \backslash Y$ and $q \neq \varphi(p)$. Let $U \subseteq Z$ be the open nonempty subset of all such points (p, q). Explicitly:

$$
U:=\{(p, q) \in Z \mid p \in X \backslash Y \text { and } q \neq \varphi(p)\} .
$$

Since Γ_{φ} is dense in $Z, \Gamma_{\varphi} \cap U \neq \emptyset$, and this can't be.
(iv) The regular map $X \backslash Y \rightarrow Z \backslash E=\Gamma_{\varphi}$ s.t. $p \mapsto(p, \varphi(p))$ is obviously the inverse of $\left.\sigma\right|_{Z \backslash E}$.

What we wanted to remark in previous proposition is that the exceptional divisor is exactly what we add to Γ_{φ} in order to get the closure Z.

At this point, since Z is a Zariski closed subset of $\mathbb{A}^{r} \times \mathbb{P}^{s}$, it's natural to ask who are the polynomials that determine Z. Let's introduce some notation. Let $I \subseteq k\left[x_{1}, \ldots, x_{r}\right]$ be the ideal such that $X=Z(I)$. Call \bar{x}_{i} the class of x_{i} modulo $I, i=1, \ldots, r$, and define $R:=k\left[x_{1}, \ldots, x_{r}\right] / I$. Lastly, if t is an indeterminate over R, define $\psi: k\left[x_{1}, \ldots, x_{r}, Y_{0}, \ldots, Y_{s}\right] \rightarrow R[t]$ to be the homomorphism of k-algebras obtained by extending $x_{i} \mapsto \bar{x}_{i}$ and $Y_{j} \mapsto g_{j}(\bar{x}) t, i=1, \ldots, r, j=0, \ldots, s$. Of course, ψ can be viewed as a morphism of graded algebras in the following way: assign degree zero to the elements of $k\left[x_{1}, \ldots, x_{r}\right], R$ and assign degree 1 to Y_{0}, \ldots, Y_{s}, t. Since by definition ψ preserves the degree, we have a morphism of graded algebras. In particular, $\operatorname{Ker}(\psi)$ will be a homogeneous ideal in the variables Y_{0}, \ldots, Y_{s} (this is easy to be proved). Therefore it makes sense to consider:

$$
Z(\operatorname{Ker}(\psi)) \subseteq \mathbb{A}^{r} \times \mathbb{P}^{s}
$$

Then we have the following result.
Proposition 2. $Z(\operatorname{Ker}(\psi))=Z\left(=\operatorname{Bl}_{Y} X=\bar{\Gamma}_{\varphi}\right)$.

Proof.

(\subseteq) We will prove that $Z(\operatorname{Ker}(\psi)) \backslash E \subseteq \Gamma_{\varphi}$, which implies $Z(\operatorname{Ker}(\psi)) \subseteq Z$. Pick $(p, q) \in Z(\operatorname{Ker}(\psi)) \backslash E$. Hence $p \notin Y$, and therefore we can assume WLOG that $g_{0}(p) \neq 0$. We observe that trivially:

$$
\left(Y_{i} g_{j}-Y_{j} g_{i} \mid i, j=0, \ldots, s\right) \subseteq \operatorname{Ker}(\psi)
$$

In particular, if $q=\left(q_{0}: \ldots: q_{s}\right)$, we have the following equalities:

$$
q_{i}=\frac{q_{0}}{g_{0}(p)} g_{i}(p), i=0, \ldots, s,
$$

and in particular $q_{0} \neq 0$. Therefore:

$$
\begin{aligned}
q=\left(q_{0}: \ldots: q_{s}\right)= & \left(\frac{q_{0}}{g_{0}(p)} g_{0}(p): \ldots: \frac{q_{0}}{g_{0}(p)} g_{s}(p)\right)=\varphi(p) \Rightarrow \\
& (p, q)=(p, \varphi(p)) \in \Gamma_{\varphi} .
\end{aligned}
$$

(\supseteq) It's enough to prove that $\Gamma_{\varphi} \subseteq Z(\operatorname{Ker}(\psi))$. So, pick $(p, \varphi(p)) \in \Gamma_{\varphi}$. We have to show that given $f \in \operatorname{Ker}(\psi), f(p, \varphi(p))=0$. Since $\operatorname{Ker}(\psi)$ is homogeneous in Y_{0}, \ldots, Y_{s}, for our purpose we can assume f to be homogeneous in Y_{0}, \ldots, Y_{s} of degree d. If briefly $x:=\left(x_{1}, \ldots, x_{r}\right)$ and $\bar{x}:=\left(\bar{x}_{1}, \ldots, \bar{x}_{r}\right)$, we have that:

$$
\begin{aligned}
& 0=\psi(f)=f\left(\bar{x}, g_{0}(\bar{x}) t, \ldots, g_{s}(\bar{x}) t\right)=f\left(\bar{x}, g_{0}(\bar{x}), \ldots, g_{s}(\bar{x})\right) t^{d} \Rightarrow \\
& f\left(\bar{x}, g_{0}(\bar{x}), \ldots, g_{s}(\bar{x})\right)=0 \Rightarrow f \in I \Rightarrow f\left(p, g_{0}(p), \ldots, g_{s}(p)\right)=0,
\end{aligned}
$$

which means that $(p, \varphi(p)) \in Z(\operatorname{Ker}(\psi))$.
Now that we're familiar with the construction of the blow up, we make some additional observations.

Observation 1. In the construction of the blow up, if we take \mathbb{P}^{r} instead of \mathbb{A}^{r}, nothing changes at all. We just have to consider homogeneous generators $\left\{G_{0}, \ldots, G_{s}\right\}$ for J and consider another rational map:

$$
\begin{aligned}
\Phi: \mathbb{P}^{r} & \rightarrow \mathbb{P}^{s} \text { s.t. } \\
p & \mapsto\left(G_{0}(p): \ldots: G_{s}(p)\right) .
\end{aligned}
$$

Everything else is the same.
Observation 2. The construction of the blow up doesn't depend on the choice of the generators for the ideal J. We mean that, if $J=\left(g_{0}^{\prime}, \ldots, g_{s^{\prime}}^{\prime}\right)$ and $\varphi^{\prime}(p):=\left(g_{0}^{\prime}(p): \ldots: g_{s^{\prime}}^{\prime}(p)\right)$, then:

$$
\Gamma_{\varphi} \cong \Gamma_{\varphi^{\prime}} .
$$

4 A concrete example: blowing up a linear subspace

Let $X:=\mathbb{A}^{r}$ and let $Y \subseteq X$ be a linear subspace of dimension $0 \leq d<r$. WLOG, we can assume that Y is the following linear subspace:

$$
\left\{\begin{array}{l}
x_{1}=0 \\
\vdots \\
x_{r-d}=0 .
\end{array}\right.
$$

So, $Z=\mathrm{Bl}_{Y} X=Z(\operatorname{Ker}(\psi))$, where:

$$
\begin{aligned}
\psi: k\left[x_{1}, \ldots, x_{r}, Y_{0}, \ldots, Y_{r-d-1}\right] & \rightarrow k\left[x_{1}, \ldots, x_{r}\right][t] \text { s.t. } \\
x_{i} & \mapsto x_{i}, i=1, \ldots, r, \\
Y_{j} & \mapsto x_{j+1} t, j=0, \ldots, r-d-1,
\end{aligned}
$$

and then extended (in particular $s=r-d-1$). Define the following ideal in $k\left[x_{1}, \ldots, x_{r}, Y_{0}, \ldots, Y_{r-d-1}\right]$:

$$
H=\left(Y_{j} x_{i+1}-Y_{i} x_{j+1} \mid i, j=0, \ldots, r-d-1\right) .
$$

The problem now is to show that $H=\operatorname{Ker}(\psi)$. The containment $H \subseteq \operatorname{Ker}(\psi)$ is trivial. The other one is more subtle. Here we prove the case $s=1$.
Take $f \in \operatorname{Ker}(\psi)$ and we can assume f homogeneous in $Y_{0}, Y_{1}(\operatorname{Ker}(\psi)$ is generated by such polynomials). We have that $f\left(x_{1}, \ldots, x_{r} ; x_{1}, x_{2}\right)=0$, therefore $\left(Y_{0} x_{2}-Y_{1} x_{1}\right)$ divides $f\left(x_{1}, \ldots, x_{r} ; Y_{0}, Y_{1}\right)$ as homogeneous polynomials with coefficients in $k\left[x_{1}, \ldots, x_{r}\right]$ and indeterminates Y_{0}, Y_{1}, and we're done.
For an inductive proof of the other cases, here's the idea: by adding suitable monomials to f, we can get a new polynomial which depends on Y_{0}, \ldots, Y_{s-1} and whose class mod $\operatorname{Ker}(\psi)$ is the same as f.

References

[J] J. Harris. Algebraic Geometry, a First Course, Springer-Verlag, New York, 1992, Graduate Texts in Mathematics, 133.
[S] I. R. Shafarevich. Basic Algebraic Geometry: Varieties in Projective Space, second edition. Springer-Verlag, 1994.

