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Fix a base field k. Consider two Zariski closed subsets Y ⊆ X ⊆ Ar (r ≥ 1)
with Y proper. Our aim is to define and understand the blow up of X along
Y (in symbols, this will be BlYX). Blow ups are important, for example
they’re used to:

• study rational morphisms;

• study singular curves;

• classify algebraic surfaces;

• build compactifications of moduli spaces of points.

The definition we give of blow up is taken from [J].

Acknowledgements: Thanks to Adrian Brunyate and Abraham Varghese
for useful discussions and suggestions.

1 Motivating example

Let’s build the blow up in a particular case to give an idea about this. In
next section, we will generalize the construction. Take k = R, r = 2, X = A2

and Y = {(0, 0)}. The blow up of A2 at (0, 0) is the Zariski closed subset:

{((x, y), (u : v)) ∈ A2 × P1|xv = yu},

together with the projection map σ((x, y), (u : v)) = (x, y). We give a picture
of this.
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2 The construction

Let J be the ideal in k[x1, . . . , xr] corresponding to Y (i.e., Y = Z(J)). Let
{g0, . . . , gs} be a finite set of generators for J , whose existence is guaranteed
by Hilbert’s Basissatz. Consider the following rational map:

ϕ : Ar 99K Ps s.t.

p 7→ (g0(p) : . . . : gs(p)).

Obviously, ϕ is not defined on Y by our construction. Let Γϕ be the graph
of ϕ. Explicitly:

Γϕ = {(p, ϕ(p))|p ∈ X\Y } ⊆ Ar × Ps.

Finally, call σ the restriction of the projection Ar × Ps → Ar to the Zariski
closure of Γϕ. Now it’s all set to give our definition of blow up.

Definition 1. We’ll define BlYX to be the Zariski closed subset Γϕ ⊆ Ar×Ps

together with the projection map σ : Γϕ → Ar. E := σ−1(Y ) ⊆ BlYX is
called the exceptional divisor.

3 First properties of the blow up

Here we list the first properties of the blow up. For simplicity of notation,
define Z := BlYX.

Proposition 1.

(i) σ is a closed map;

(ii) σ(Z) = X;

(iii) Z\E = Γϕ, or equivalently Z = Γϕ

∐
E;

(iv) σ|Z\E is an isomorphism, in particular Z\E and X\Y are birationally
equivalent.

Proof.

(i) This is a consequence of [S, Chapter I, Section 5.2, Theorem 3], which
is a pretty (basic) important statement.

(ii) Obviously, σ(Γϕ) = X\Y ⇒ σ(Γϕ) = X. But σ is closed, therefore

σ(Γϕ) = σ(Γϕ) = σ(Z) = X.
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(iii) (p, q) ∈ Γϕ ⇒ p ∈ X\Y ⇒ (p, q) /∈ E.

Conversely, let (p, q) ∈ Z\E. Assume by contradiction that (p, q) /∈ Γϕ.
By previous point, p ∈ X, but p /∈ Y , otherwise (p, q) ∈ E. So,
p ∈ X\Y and q 6= ϕ(p). Let U ⊆ Z be the open nonempty subset of
all such points (p, q). Explicitly:

U := {(p, q) ∈ Z|p ∈ X\Y and q 6= ϕ(p)}.

Since Γϕ is dense in Z, Γϕ ∩ U 6= ∅, and this can’t be.

(iv) The regular map X\Y → Z\E = Γϕ s.t. p 7→ (p, ϕ(p)) is obviously the
inverse of σ|Z\E.

What we wanted to remark in previous proposition is that the exceptional
divisor is exactly what we add to Γϕ in order to get the closure Z.

At this point, since Z is a Zariski closed subset of Ar×Ps, it’s natural to ask
who are the polynomials that determine Z. Let’s introduce some notation.
Let I ⊆ k[x1, . . . , xr] be the ideal such that X = Z(I). Call xi the class
of xi modulo I, i = 1, . . . , r, and define R := k[x1, . . . , xr]/I. Lastly, if
t is an indeterminate over R, define ψ : k[x1, . . . , xr, Y0, . . . , Ys] → R[t] to
be the homomorphism of k-algebras obtained by extending xi 7→ xi and
Yj 7→ gj(x)t, i = 1, . . . , r, j = 0, . . . , s. Of course, ψ can be viewed as a
morphism of graded algebras in the following way: assign degree zero to the
elements of k[x1, . . . , xr], R and assign degree 1 to Y0, . . . , Ys, t. Since by
definition ψ preserves the degree, we have a morphism of graded algebras.
In particular, Ker(ψ) will be a homogeneous ideal in the variables Y0, . . . , Ys
(this is easy to be proved). Therefore it makes sense to consider:

Z(Ker(ψ)) ⊆ Ar × Ps.

Then we have the following result.

Proposition 2. Z(Ker(ψ)) = Z(= BlYX = Γϕ).

Proof.
(⊆) We will prove that Z(Ker(ψ))\E ⊆ Γϕ, which implies Z(Ker(ψ)) ⊆ Z.
Pick (p, q) ∈ Z(Ker(ψ))\E. Hence p /∈ Y , and therefore we can assume
WLOG that g0(p) 6= 0. We observe that trivially:

(Yigj − Yjgi|i, j = 0, . . . , s) ⊆ Ker(ψ).
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In particular, if q = (q0 : . . . : qs), we have the following equalities:

qi =
q0

g0(p)
gi(p), i = 0, . . . , s,

and in particular q0 6= 0. Therefore:

q = (q0 : . . . : qs) =

(
q0

g0(p)
g0(p) : . . . :

q0
g0(p)

gs(p)

)
= ϕ(p)⇒

(p, q) = (p, ϕ(p)) ∈ Γϕ.

(⊇) It’s enough to prove that Γϕ ⊆ Z(Ker(ψ)). So, pick (p, ϕ(p)) ∈ Γϕ. We
have to show that given f ∈ Ker(ψ), f(p, ϕ(p)) = 0. Since Ker(ψ) is homo-
geneous in Y0, . . . , Ys, for our purpose we can assume f to be homogeneous
in Y0, . . . , Ys of degree d. If briefly x := (x1, . . . , xr) and x := (x1, . . . , xr), we
have that:

0 = ψ(f) = f(x, g0(x)t, . . . , gs(x)t) = f(x, g0(x), . . . , gs(x))td ⇒

f(x, g0(x), . . . , gs(x)) = 0⇒ f ∈ I ⇒ f(p, g0(p), . . . , gs(p)) = 0,

which means that (p, ϕ(p)) ∈ Z(Ker(ψ)).

Now that we’re familiar with the construction of the blow up, we make some
additional observations.

Observation 1. In the construction of the blow up, if we take Pr instead of
Ar, nothing changes at all. We just have to consider homogeneous generators
{G0, . . . , Gs} for J and consider another rational map:

Φ: Pr → Ps s.t.

p 7→ (G0(p) : . . . : Gs(p)).

Everything else is the same.

Observation 2. The construction of the blow up doesn’t depend on the
choice of the generators for the ideal J . We mean that, if J = (g′0, . . . , g

′
s′)

and ϕ′(p) := (g′0(p) : . . . : g′s′(p)), then:

Γϕ
∼= Γϕ′ .

4



4 A concrete example: blowing up a linear

subspace

Let X := Ar and let Y ⊆ X be a linear subspace of dimension 0 ≤ d < r.
WLOG, we can assume that Y is the following linear subspace:

x1 = 0
...
xr−d = 0.

So, Z = BlYX = Z(Ker(ψ)), where:

ψ : k[x1, . . . , xr, Y0, . . . , Yr−d−1]→ k[x1, . . . , xr][t] s.t.

xi 7→ xi, i = 1, . . . , r,

Yj 7→ xj+1t, j = 0, . . . , r − d− 1,

and then extended (in particular s = r − d − 1). Define the following ideal
in k[x1, . . . , xr, Y0, . . . , Yr−d−1]:

H = (Yjxi+1 − Yixj+1|i, j = 0, . . . , r − d− 1).

The problem now is to show that H = Ker(ψ). The containment H ⊆ Ker(ψ)
is trivial. The other one is more subtle. Here we prove the case s = 1.
Take f ∈ Ker(ψ) and we can assume f homogeneous in Y0, Y1 (Ker(ψ) is
generated by such polynomials). We have that f(x1, . . . , xr;x1, x2) = 0,
therefore (Y0x2 − Y1x1) divides f(x1, . . . , xr;Y0, Y1) as homogeneous polyno-
mials with coefficients in k[x1, . . . , xr] and indeterminates Y0, Y1, and we’re
done.
For an inductive proof of the other cases, here’s the idea: by adding suitable
monomials to f , we can get a new polynomial which depends on Y0, . . . , Ys−1
and whose class mod Ker(ψ) is the same as f .
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