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1 Introduction

In this talk I will discuss the content of [L].

2 General idea of the paper

Let us briefly and informally give the general idea behind this paper. Let D be a
bounded Hermitian1 symmetric2 domain of type IV. A concrete example of D which we will
keep in the back of our mind throughout the whole talk is the period domain parametrizing
polarized K3 surfaces of a given degree.

Example 2.1. Let LK3 = U⊕3 ⊕ E⊕2
8 . Fix a primitive vector v ∈ LK3 and consider

Dq D′ = {[x] ∈ P(v⊥ ⊗Z C) | x · x = 0, x · x > 0}.

We select a preferred connected component: D.

Let Γ be an arithmetic group3 acting on D. Let us also assume we are in the nice case
where Γ is neat4 and acts properly discontinuously5 on D. In particular, D/Γ is a complex
analytic manifold (for this, neatness can be relaxed to torsion-freeness). Then we have the
following theorems.

1A Hermitian manifold is a complex manifold X with a Hermitian inner product on each holomorphic
tangent space TxX which varies smoothly with x ∈ X. Important examples of these are Kähler manifolds.

2A bounded domain D is called symmetric if for any point x ∈ D there exists a holomorphic involution
with x as an isolated fixed point.

3Let G be an algebraic group defined over Q together with a specified embedding G ↪→ GL(n,C). A
subgroup Γ ⊂ G(Q) is called arithmetic if it is commensurable with G(Z) := G(Q)∩GL(n,Z), i.e. Γ∩G(Z)
has finite index in Γ and G(Z).

4Γ is neat if the subgroup of C∗ generated by the eigenvalues of its elements is torsion-free.
5Let G be a group and X a topological space. An action G y X is properly discontinuous if X is a

locally compact space (i.e. every point in X has a compact neighborhood) and for every compact subset
K ⊆ X, the set {g ∈ G | gK ∩K 6= ∅} is finite
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Theorem 2.2 (Baily-Borel). D/Γ is a quasi-projective variety. Indeed, D/Γ has a projec-

tive normal compactification D/Γ
BB

called the Baily-Borel compactification. The boundary
of this compactification has dimension at most 1 (and usually it is highly singular).

Theorem 2.3 (Ash-Mumford-Rapoport-Tai). For an appropriate choice τ of combinato-

rial data for each 0-dimensional stratum of D/Γ
BB

, there exists a normal complete (pos-

sibly projective) compactification D/Γ
τ

with divisorial boundary mapping birationally onto

D/Γ
BB

. These compactifications are called toroidal compactifications.

An important problem in algebraic geometry is to provide toroidal compactifications
with modular meaning in terms of degenerations of the object parametrized by D.

In the paper in analysis a new family of compactifications of D/Γ is constructed. This
family contains toroidal and Baily-Borel compactifications as special cases. These new
compactifications are called semitoric compactifications. One has birational morphisms

D/Γ
τ
→ D/Γ

semitoric
→ D/Γ

BB
,

which are isomorphisms on D/Γ. Other specific birational modifications of these semitoric
compactifications are constructed in relation to a given hyperplane arrangement on D. We
will mainly focus on these semitoric compactifications.

3 Setup: linear algebra

• Let V be a C-vector space and let φ : V ×V → C be a symmetric bilinear form which
is defined over Q. For the applications we have in mind, one can start from a lattice
L, take V = L⊗Z C and define φ by extending the bilinear form on L.

• Assume that dim(V ) = n+ 2 and that φ has signature (2, n). Recall that the notion
of signature of a symmetric bilinear form makes sense over R (which is our case),
and 2 (resp. n) is the number of positive (resp. negative) eigenvalues.

Definition 3.1. A vector subspace W ⊂ V is called isotropic if φ|W×W is identically zero
(or equivalently, if the quadratic form induced by φ restricted to W is identically zero).

Observation 3.2. Let W ⊂ V be a isotropic subspace. Then

W ⊆ W⊥ = {v ∈ V | φ(v, w) = 0 for all w ∈ W}.

This can be counterintuitive from the point of view of Euclidean geometry where we have
a positive definite inner product (for instance, in our case it is false that W ⊕W⊥ = V ).
However, it still holds that

dim(W ) + dim(W⊥) = dim(V ).
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Finally, observe that φ naturally induces a symmetric bilinear form on W⊥/W defined by

(x+W, y +W ) 7→ φ(x, y).

It is easy to verify that this is well defined.

Proposition 3.3. Let W ⊂ V be an isotropic subspace defined over R (we callet it an R-
isotropic subspace for short). Then 0 ≤ dim(W ) ≤ 2. An isotropic subspace of dimension
1 (resp. 2) is called isotropic line (resp. isotropic plane) and it is denoted by the letter
I (resp. J). The bilinear form on I⊥/I (resp. J⊥/J) has signature (1, n − 1) (resp.
(0, n− 2)).

Isotropic subspaces of V are important for the following reason. The space

{[v] ∈ P(V ) | φ(v, v) = 0 and φ(v, v) > 0},

has two connected components exchanged by complex conjugation. Let us choose one
of them and call it D. If O(φ) is the group of isomorphisms f : V → V such that
φ(f(v1), f(v2)) = φ(v1, v2) for all v1, v2 ∈ V , let Γ ⊂ O(φ) be an arithmetic subgroup which
is neat and which preserves D. Then the 0-dimensional (resp. 1-dimensional) boundary

strata of D/Γ
BB

correspond to Γ-orbits of Q-isotropic lines (resp. Q-isotropic planes).

4 Setup: the conical locus of D
The combinatorial data necessary to compactify D/Γ is called admissible decomposition

of the conical locus of D. So, first, what is the conical locus of D? As the name suggests,
this is a disjoint union of cones living in a certain space.

Let I be a Q-isotropic line. Then I⊥/I is a hyperbolic lattice lattice. The subset of
(I⊥/I)(R) given by x · x > 0 has two connected components which are open convex cones.
Denote by CI one of the two.

Let J be a Q-isotropic plane. The subset of
∧2 J(R)\{0} has two connected components

which are open half lines. Denote by CJ one of the two.
The cones CI , CJ can be chosen in a canonical way which depends on the choice of

connected component D we made.
{0} is also a Q-isotropic space of V , and we define C{0} to be {0}.

Definition 4.1. The conical locus of D is the disjoint union

C(D) =
∐
W⊂V

W Q-isotropic

CW ,
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Observation 4.2. In which space does C(D) live?

C(D) ⊂ so(φ) = {f ∈ End(V ) | φ(f(v1), v2) = −φ(v1, f(v2)) for all v1, v2 ∈ V }.

How do you see this? There is a natural identification so(φ) ≡
∧2 V given by v1∧v2 7→ fv1,v2

such that fv1,v2(v) = φ(v1, v)v2 − φ(v2, v)v1 (many thanks to Ernest Guico for explaining
this to me). Obviously

∧2 J ⊂
∧2 V . In addition, I⊥/I can be naturally embedded in∧2 V by considering I ⊗C (I⊥/I) instead. More explicitly, the map

x⊗ (y + I) 7→ x ∧ y,

gives an embedding I ⊗C (I⊥/I) ↪→
∧2 V . Therefore, we can see how C(D) is contained

in so(φ) ≡
∧2 V . Also, observe that the elements in C(D) ⊂ so(φ) are nilpotents.

5 Admissible decomposition of C(D)

Notation 5.1. Let W ⊂ V be a Q-isotropic space. Then let CW,+ be the convex hull of
the Q-vectors in CW .

Definition 5.2. An admissible decomposition of C(D) is a Γ-invariant collection Σ of
closed convex cones contained in CI,+ such that, for any I Q-isotropic lines such, we have
that

• If σ ∈ Σ|CI,+
and τ is a face of σ, then τ ∈ CI,+;

• If σ, τ ∈ Σ|CI,+
, then σ and τ meet along a common face;

• ∪σ∈Σ|CI,+
σ = CI,+;

• If σ ⊂ CI,+ is a rational finite closed convex cone, then σ ∩ Σ|CI,+
is a finite fan.

Σ has to satisfy the following compatibility condition: for any Q-isotropic plane J , the
support space (we omit the formal definition of it for simplicity, but we give an idea) of
CJ,+ in CI,+ has to be independent from the choice of Q-isotropic line I ⊂ J .

Theorem 5.3 (Looijenga). Let Σ be an admissible decomposition of C(D). Then there

exists a normal complete (possibly projective) compactification D/Γ
Σ

associated to Σ. If
Σ1,Σ2 are two such decompositions and Σ2 refines Σ1, then we have a birational morphism

D/Γ
Σ2 → D/Γ

Σ1
.

Example 5.4. • D/Γ
BB

= D/Γ
Σ

where Σ is the admissible decomposition of C(D)
induced by the cones CI,+ (so there are no subdivisions).
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• Toroidal compactifications can also be recovered as D/Γ
Σ

if Σ|CI,+
is a fan for all I

Q-isotropic lines.

Observation 5.5. Semitoric compactifications are birational modifications of D/Γ
BB

.

Example 5.6. Another class of examples of semitoric compactifications comes from hy-
perplane arrangements. Let H = {Hi}i be a collection of hyperplanes in V of signature
(2, n− 1) (these determine nonempty hyperplane sections D∩P(Hi)). Then, for any given
Q-isotropic line I, the hyperplanes Hi ⊃ I determine a decomposition of CI,+. Therefore,
for an appropriate choice of H , we can obtain an admissible decomposition Σ(H ) of

C(D), hence a semitoric compactification D/Γ
Σ(H )

.

Remark 5.7. Conclude with how this connects to my research.

References

[L] Looijenga, E.: Compactifications defined by arrangements, II: locally symmetric vari-
eties of type IV. Duke Math. J. 119 (2003), no. 3, 527–588.

5


	Introduction
	General idea of the paper
	Setup: linear algebra
	Setup: the conical locus of D
	Admissible decomposition of C(D)
	Bibliography

