demma. (a) $\forall t \in S \ triple \ point, |\nu^{-1}(t)| = 3;$ (b) $\forall p \in S \text{ pinch point, } | D^{-1}(p) | = 1;$ (c) V d E 5 double crossing point, | 12-1(d) [=2; (d) Let $L := \sum_{i < j} l_{ij}$. Then $E := D^{-1}(L)$ is a configuration of 6 genus 1 curves $E = \sum_{i < j} C_{ij}$ with $\mathcal{D}(e_{ij}) = l_{ij}$ as shown below: $\begin{array}{c} & & & \\ & &$ Proof. (a), (b), (c) can be checked locally by computing explicitly the normalizations in each case (left as exercise). Qualitatively, the following gives au intuition of what is happening: $(a) \qquad (a) \qquad (a)$

(c) $\left(\begin{array}{c} \\ \end{array} \right) \leftarrow \left(\begin{array}{c} \\ \end{array} \right) \\ \leftarrow \end{array} \right)$ (d) Vicj, U-1(lig) = eig USPBUS23, where eig is the double cover of lig=P¹ branched at the 4 pinch points (hence, it is a genus 1 curve by Hurwitz's formula), and V(P), V(2) are the two triple points on lig. demma. The Weil divisor 4L on 5 is Cartier and $\nu^{*}(4L) = 2E$. Proof. Let $H_o = \{X_o = 0\} \subseteq \mathbb{P}^3$, which contains the lines los, loz, loz. Then $H_{o} = 2l_{o1} + 2l_{o2} + 2l_{o3}$ because $f(0, X_1, X_2, X_3) = X_1^2 X_2^2 X_3^2$. Similarly for H1, H2, H3. Then we have that $(H_0 + H_1 + H_2 + H_3) = 4 \log 4 4 \log 4 4 \log 4$ $L_{\text{Cartier}} + 4l_{12} + 4l_{13} + 4l_{23} = 4L$ So, 4L is Cartier. To prove the last claim, we have that $\mathcal{V}^{*}(4L) = mE, \exists m \in \mathbb{Z}.$ To determine m, we intersect both sides with

the curve
$$e_{o1} + e_{o2} + e_{o3}$$
:
 $m \in (e_{o1} + e_{o2} + e_{o3}) = m \Im \in e_{o1}$
 $m \in (e_{o1} + e_{o2} + e_{o3}) = m \Im (e_{o1}^{2} + e_{o1}^{2} e_{o2} + e_{o1}^{2} e_{o3})$
 $l_{o1} = m \Im (e_{o1}^{2} + e_{o1}^{2} e_{o2} + e_{o1}^{2} e_{o3})$
 $l_{o1} = 12 m$
 $\mathcal{V}^{*}(4L) \cdot (e_{o1} + e_{o2} + e_{o3}) = 4L \cdot \mathcal{D}_{*}(e_{o1} + e_{o2} + e_{o3})$
 $definition of = 4L \cdot (2l_{o1} + 2l_{o2} + 2l_{o3})$
 $= 4L \cdot H_{o} |_{5}$
 $= (H_{o} + ... + H_{3}) |_{5} \cdot H_{o} |_{5}$
 $= (H_{o} + ... + H_{3}) \cdot H_{o} \cdot \Im$
 $H \in \mathbb{P}^{3} = 4H \cdot H \cdot GH = 24H^{3} = 24$
Hence, $12m = 24 \implies m = 2$.
 $Thm.$
 $(a) P_{3}(S) = o;$
 $(b) \lesssim is not rational;$
 $(c) Q(S) = 0.$

Proof.
(a) The singular ities of 5 allows to compute the canonical class of 5 as:

$$K_{S} = D^{*}(K_{\overline{S}}) - E.$$
(See Kollár's "Singularities of the MAP", Section 5.1)
K_{\overline{S}} can be computed using the adjunction formula:

$$K_{\overline{S}} = (K_{p3} + \overline{S})|_{\overline{S}} = (-4H + 6H)|_{\overline{S}} = 2H|_{\overline{S}}.$$
So, $|K_{S}| = |D^{*}(2H|_{\overline{S}}) - E|$ is the linear
system of quadrics in P³ passing simply through L.
As there are no such quadrics, $|K_{S}| = 4$,
which means that $P(S) = h^{\circ}(K_{S}) = 0$.
(b) $2K_{S} = D^{*}(4H|_{\overline{S}}) - 2E$ $P(H^{0}(6)) = P(0)$
before $= D^{*}(4L) - 2E$ $= pt$
Necall that the Kodaira dimension of S, $\pi(S)$
is defined as: $Y_{\mu K_{S}} = S - P(H^{0}(nK_{S}))$
 $\pi(S) = max Edim im(Y_{\mu K_{S}}) | n \ge 1 E$.
If $n \ge 1$ is odd, we have that

dim im $\mathcal{Y}_{[nKS]} = \dim \operatorname{im} \mathcal{Y}_{[KS]} = \mathbb{P}(\mathcal{Y})$ = dim $\phi = -\infty$ $\mathbb{P}(\mathcal{H}^{\circ}(KS)) = \mathbb{P}(\phi)$ = ϕ If n ≥ 1 is even, we have that dim im YINKS = dim im YIO $\mathcal{P}(H^{\circ}(\circ)) =$ $P(H^{\circ}(\mathcal{G})) =$ = dim pt = 0 P(C) = ptSo, $\mathcal{K}(S) = 0$. Hence S is not rational (rational surfaces have Kodaira dimension $-\infty$),