dim im
$$
l_{1nKs}
$$
 = dim im l_{1Ks} $\mathbb{P}(H^o(Ks)) = \mathbb{P}(\emptyset)$
\n= dim $\emptyset = -\infty$
\nIf n31 is even, we have that
\ndim im l_{1nKs} = dim im l_{10} $\mathbb{P}(H^o(e))$ =
\n \Rightarrow dim $\mathbb{P}(H^o(e))$ =
\n $\mathbb{P}(H^o(e))$ =<

 \Rightarrow 12 - 129 = 2 - 49 + b₂ \Rightarrow 89 = 10-b₂ \Rightarrow 9 = $\frac{10-b_2}{8}$. f we show that $b_2 \geq 3$, then q ¹ which implies that 900 . $To show that b_2 \geq 3, consider the homology$ classes: C_{01}, C_{02}, C_{03} . These are independent in $H_2(S, \mathbb{Z})$. To prove this, suppose that $\exists \alpha, b, c \in \mathbb{Z}$ s.t. $a e_{o1} + b e_{o2} + c e_{o3} = o$ in $H(S, \mathbb{Z})$ By intersecting with Cos we obtain that $a e_{o1}^2 + b e_{o2} \cdot e_{o1} + c e_{o3} \cdot e_{o1} = 0$ ed e_{o1} \Rightarrow $b+c=0.$ $B_{\underset{10}{\times}}$ intersecting also with $C_{\scriptstyle o2}$ and $C_{\scriptstyle o3}$, we obtain that $b + C = C$ $2 + C$

 $\begin{pmatrix} a+b & =0 \end{pmatrix}$ whose only solution is $a = b = c = 0$. Hence C_{01}, C_{02}, C_{03} are independent in $H^{2}(S, Z)$

SEnriques surfaces: general definition.

Def. An Euriques surface is a surface Y (smooth, conn, $proj, z$ -dim, alg. vor.) such that $2 K_{\gamma} \sim o$ and $P_g(Y) = g(Y) = 0$.

 E_n riques example S , normalization of the sextic $S \subseteq U$, is (... of course!) and example of Enriques surface, as we have shown that $2K_S \sim o$ and $P_g(S) = 2(S) = o$

As we will prove, any Enriques surface Y is not simply connected In particular the universal cover $X \rightarrow Y$ is a different type of surface Such universal covers are examples of K3 surfaces and many of the basic properties of ^Y can be understood from the geometry of X . So, we focus for ^a bit on ^K ³ surfaces

§ K3 surfaces.

Def. A K3 surface is a surface X (smooth, conn, proj, 2-dim, alg. vor.) such that $K_X \sim 0$
(so that $P_g(x) = 1$) and $g(x) = 0$.

 $EX. X C P$ ³ smooth quartic hypersurface.
 $K_X = (K P^3 + X) \Big|_X \sim (-4H + 4H) \Big|_X = 0$ To show $q(x) = 0$, the short exact sequence of sheaves

 $H^{1}(P, P_{p}) \rightarrow H^{1}(P, P_{p}) \rightarrow H^{1}(X, P_{X}) \rightarrow H^{2}(P, P_{p})(-4) \rightarrow ...$ Hence, $H^1(X, \mathcal{O}_X) \cong 0$. So, $q(X) = 0$.

Jemma, Let S be a surface with Ks=0 (numerically equivalent to 0). Then S
is minimal: $\overrightarrow{A}C\subseteq S$, $C\cong IP^1$, $s.t. C^2=1$
(these are called (-1)- curves).

Prop.
$$
\det X
$$
 be a K3 surface. Then, X is minimal, $x(X) = 0$, $b_1(X) = 0$, $b_2(X) = 22$, $h^{1,1}(X) = 20$, and $\pi_1(X) = \{1\}$.

\nProof. $K_X \sim 0 = X_X \equiv 0$, so minimality follows from the previous lemma. $x(X) = 0$ follows that f from the definition of Kodaira dimension and the fact that $K_X \sim 0$. (Exercise.)

\nby W defines $\frac{1}{10}$

\nBy W defines $\frac{1}{10}$

\n1-9+P = $\chi(0_X) = \frac{\chi_{top}(X) + k_X^2}{12} = \frac{\chi_{top}(X)}{12}$

\nThus, $\chi_{top}(X) = 24 \Rightarrow 26 - 36 + 6 = 24$

\nThus, $\chi_{top}(X) = 24 \Rightarrow b_2 = 22$.

 \Rightarrow 2 + b₂ = 24 => b₂ = <<.
The Hodge decomposition gives that

 $H^{2}(X,\mathbb{C})\cong H^{2,\circ}(X)\oplus H^{1,1}(X)\oplus H^{0,2}(X)$ $H^{2,\circ}(x) \cong H^{\circ}(\Lambda^2 \Omega_X) = H^{\circ}(\omega_x) \cong \mathbb{C}$ $H^{0,2}(x) = H^{2,0}(x) \cong \mathbb{C}$ \mathcal{S}_{\bullet} , $H^{4,1}(X)$ is 20 dimensional. Finally all ^K ³ surfaces are diffeomorphic as differentiable ⁴ dimensional manifolds Sa is diffeomorphic to a smooth quartic $X_4 \subseteq \mathbb{P}^5$. Hence, $\pi_1(x) \cong \pi_1(x_4)$. To prove that $\pi_1(X_4) \cong \{1\}$, we can use the Lefschetz $Any perplane theorem. To apply it, consider
\n
$$
X_{4} \subseteq \mathbb{P}^{3} \xleftarrow{\text{[O(4)]}} \mathbb{P}^{4+3 \atop 3 \atop 1} - 1 \supseteq H
$$
Recides$ H the idea is to realize revouese deg 4 S_4 as a $\Rightarrow v(x_4) = v(P^3) \cap H$. Then, Ingerplane section of $\pi_1(X_{4}) \cong \pi_1(v(X_{4})) = \pi_1(v(\mathbb{P}^3) \cap H)$ senething
defschetz $\cong_{\pi_1}(v(\mathbb{P}^3))$ Simply onnected. $\frac{2}{\text{hyperplane}} \geq \pi_1 \left(\nu^{\text{(P3)}} \right)$ theorem $\cong \pi_1(\mathbb{P}^3) \cong \{1\}$. \Box