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If we show that be 23 then q

1 which

implies that 9 0

To show that be 3 consider the homology
classes Cos Cos Cos These are independent

in Hz 5 2 To prove this suppose that
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By intersecting also
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obtain that
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whoseonly solution is a b C 0 Hence
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Enriques surfaces general definition

Def.AEFisasurface'Y smooth conn

prof 2 dim alg var such that 2 Kyno
and
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Enriques example
5 normalization of

the sextic 5 P is of course an

example of Enriques surface as we have

shown that 2kg o and Pg S q S 0

As we will prove any Enriques surface Y
is not simply connected

In particular
the universal cover Y is a different

type of surface
Such universal covers

are examples of K surfaces and many

of the basic properties of Y can be

understood from the geometry of So

we focus for a bit on K 3 surfaces
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prof 2 dim alg var such that Kyo
so that Pg x 1 and q x 0

Elia E IP 3 smooth quartic hypersurface
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To show q X 0 theshortexactsequence of sheaves
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Then in cohomology we have the long exact

sequence the cohomology H Opu d is well known

see Hartshorne Chapter II Thm 5.1
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Lemme Let S be a surface with Ks 0

numerically equivalent to
o Then S

is mea C E S CEPI sit CE 1
these are called 1 curves



Proof Homework Hint You have to use the so calle

Ferma If CES is a curve then
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Eop Let be a K 3 surface Then is

minimal K X 0 b X 0 ba X 22

h x 20 and Ta X 1

Proof Kyo Kyeo so minimality follows

from the previous lemma K X o follows

from the definition of Kodaira dimension

and the Fact that Kx no Exercise

ba X 29 X 0
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By Noether's formula

we have that
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The Hodge decomposition gives that
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So H X is 20 dimensional

Finally all K 3 surfaces are

diffeomorphic as differentiable 4 dimensional

manifolds Sa is diffeomorphic to

a smooth quartic 4 E IP Hence

II X Te Xa To prove that

TI 4 1 we can use the Lefschetz

hyperplane theorem To apply it consider
Roughly
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to realize
veronese deg4 54 as a

4 IP n H Then hyperplane
section of

Te a E Te v44 T1 v F 1H something

Effetti IT IP simplyconnected

theorem IT P 1

RMI For a smooth alg var X recall

Pic X Divisors linear equivalence
NS X Divisors algebraic equivalence
Num X Divisors numerical equivalence


