H²(X, C)
$$
\cong
$$
 H^{2,0}(X) \oplus H^{2,1}(X) \oplus H^{0,2}(X)
\nH^{2,0}(X) \cong H⁰($\Lambda^2\Omega_X$) = H⁰(ω_X) \cong C
\nH^{0,2}(X) \cong H⁰(X) \cong C
\nSo, H^{4,1}(X) is 20 dimensional.
\nFinally, all K3 surfaces are
\ndifffeomorphic as differentiable 4-dimensional
\nmanifolds So, X is differentiable 4-dimensional
\n ω smooth quartic X4 \subseteq P³. Hence,
\n $\pi_4(X) \cong \pi_4(X_4)$. To prove that
\n $\pi_4(X) \cong \pi_4(X_4)$. To prove that
\n $\pi_4(X_4) \cong \{1\}$, we can use the defschetz
\n ω to prove
\n $X_4 \subseteq P^3 \cup (4)| \longrightarrow^{\{4\}} = 1$ Roughly is
\n $X_4 \subseteq P^3 \cup (4)| \longrightarrow^{\{4\}} = 1$ Roughly is
\n $\pi_4(X_4) \cong \pi_4(\nu(R_4)) = \pi_4(\nu(P^3)) \cup \{1\}$ simpling
\n $\pi_4(X_4) \cong \pi_4(\nu(R_4)) = \pi_4(\nu(P^3))$ simply omitted.
\nHence, Eqs. and Eqs. \cong F₄($\nu(P^3)$) Shly sometimes
\n \cong F₄($\nu(P^3)$) Shly computed
\n \cong F₄($\nu(P^3)$

There are natural surjections: S_{ex}
 $P: c(X) \Rightarrow N(C(X) \Rightarrow M: (X)$ book on K3s, $Pic(X) \to NS(X) \to Num(X)$, book on K3s, Prof $Ch 1$, Prop 2.4 For a K ^s surface, the above are isomorphisms We will see, this will not be the case for Enriques surfaces The final goal for this section is to prove: Then $\det X$ be a K 3 surface. Then the attice $(H^{2}(X,\mathbb{Z}), \cup)$ is isometric to $U^{\oplus 3}$ $E_8^{\oplus 2}$ To prove this, we have to review a few fundamentals in lattice theory ϵ_{or} the cup product "V on H (X, Z), see Hatcher's $book, $3.2.$

St undamentals of lattice theory, I. $\frac{Det}{(1)}$ A lattice is a pair (L, b_L) where L is a f.g. free Z -module and $b_L: L \times L \rightarrow Z$ is a symmetric bilinear form. We usually denote ^a lattice only by its underlying 2 module L (2) A lattice $L \subseteq L$ is a sublattice of L if $b_{L} = b_{L}$ $\lfloor L_{X} L \rfloor$. (3) Two latties L1, L2 are isometric if $\exists a \; Z$ -modules isomorphism $\varphi: L_1 \longrightarrow L_2$ such that $b_{L_2}(\varphi(v), \varphi(w)) = b_{L_1}(v, w), \nabla v, w \in \mathbb{R}$ ^y is called an isometry E xamples
(1) Let $p,q \in \mathbb{Z}_{\geq 0}$. We denote by $I_{P,2}$ the lattice \mathbb{Z}^{p+2} with symm. bil. form given by the matrix $\left(\begin{array}{c|c} \mathcal{I}_{\mathfrak{p}} & o \\ \hline o & \mathcal{I}_{\mathfrak{p}} \end{array}\right),$

where In denotes the identity matrix of size rxr and ⁰ Zero matrices of appropriate sin Z^2 (2) $U := (Z^2, (2, 5))$. It is called the hyperbolic plane. (3) For any Dynkin diagram A_n (n31), $D_n(n>4)$, $E_n(n=6,7,8)$ we can associate a lattice by considering \mathbb{Z}^n together with the bil. form given by the incidence matrix of the graph but with ²⁵ along the diagonal. For example: Symbol Dynkin diagram Lattice D_4 $1 - \frac{2}{\sqrt{4}}$ $(2^{\frac{1}{7}})^{2} - \frac{1}{1}$ $1 - C$ 10 2 E_8 1 0 0 $\frac{1}{3}$ 4 5 6 7 Bourbaki's notation)

Def. L lattice, { $e_1, ..., e_n$ } Z-basis for L. Then, the Gram matrix L associated to $\{e_1, ..., e_n\}$ is the number $(b_L(e_i,e_j))_{1\leq i,j\leq n}$. Def. Let L be a lattice and M a Gram matrix for L. Then, we define the voux rk (L), positive to be resp. the rauk, determinant, and signature of M. These do not depend on the choice of M: if N is another Gram matrix, then $N = B^{\dagger}MB$ for some integral invertible matrix $B(S\sigma, det(B) = \pm 1)$. Def: A lattice L is called • Nondegeuerate if discr(L) = 0; . Unimodular if discr (L)=+1; \bullet Indefinite if $P.7 \ge 1$; · Even if $\forall v \in L, b_L(v,v) \in Z\mathbb{Z}$; o Odd if \exists veL s.t. $b_{L}(v, v)$ & zZ . Examples. . Ip, q is odd and minodular; · U is even, unimodular, of signature (1,1); · Eg is even, unimodular, of signature (0,8);

\n- The ADE lattices are even and negative definite.
\n- E₈ is the only unimodular one.
\n- Det\n
	\n- Let
	$$
	L = (\mathbb{Z}^n, b_L)
	$$
	 be a lattice and $m \in \mathbb{Z}$. Then,
	\n- Let $L_1 = (\mathbb{Z}^n, m b_L)$.
	\n- det $L_1 = (\mathbb{Z}^n, b_L)$, $L_2 = (\mathbb{Z}^{n_2}, b_L)$. Then,
	\n- $L_1 \oplus L_2 := (\mathbb{Z}^{n_1} \oplus \mathbb{Z}^{n_2}, b_{L_1} \oplus b_{L_2})$, where
	\n- $b_{L_1} \oplus b_{L_2} \left((w_1, w_2), (w_1, w_2) \right)$ and $v_1 = b_{L_1}(v_1, w_1) + b_{L_2}(v_2, w_2)$.
	\n\n
\n

Thm (Milnor) Set L be a uuingolder lattice of signature (P.2). The following hold:

\n(i) If L is odd, then
$$
L \cong \text{I}_{P.2}
$$
;

\n(ii) If L is even and indefinite, then

\n
$$
L \cong \bigcup_{\varnothing} \text{I}_{P} \oplus \text{I}_{g} \opl
$$

Examples. (1) Let L be a even unimodular lattice of
signature $(1, 9)$. Then $L \cong U \oplus E_8$. (2) Let L be a even unimodular lattice of signature $(3,19)$. Then $L \cong U^{\oplus 3} \oplus E_8^{\oplus 2}$.

 S Fundamentals of lattice theory, $\underline{\Pi}$.

 R mk. Nondegenerate lattices $L = (Z^n, b_L)$ are quite convenient. First, $rk(L) = n$. Moreover, ^L naturally injects into the dual lattice $L^* = Hom_{\mathbb{Z}}(L, \mathbb{Z})$ as follows:

For these reasons, unless otherwise stated, we will consider nondegenerate lattices. Def The discriminantgroup of ^a lattice ^L is the abelian group $A_L := L^*/L$. Rus. When computing A_L , the following identification is useful:

 $L^* \cong \Big\{veL_{\mathbb{Q}}\mathbb{Q} \Big| b_L(v,w) \in \mathbb{Z} \ \forall w \in L \Big\}.$ Another useful tool is provided by the following.