& Fundamentals of lattice theory, II.

<u>Rmk</u>. Nondegenerate lattices L = (Z", b_) are quite convenient. First, rK(L) = n. Moreover, L'naturally injects into the dual lattice L* = Homz (L,Z) as follows: $L \longrightarrow L^*$

$$v \mapsto b_{L}(v, -)$$

For these reasons, unless otherwise stated, we will consider nondegenerate lattices.

Def. The discriminant group of a lattice L is the abelian group $A_L := L * / L$. Rmx. When computing AL, the following identification is useful:

$$L^* \cong \{v \in L \otimes \mathbb{Q} \mid b_L(v, w) \in \mathbb{Z} \mid \forall w \in L\}.$$

Another useful tool is provided by the following. Thm. Let L be a lattice. Then (ii) $|fL' \subseteq L$ is a sublattice s.t. $r\kappa(L') = r\kappa(L)$, then

$$\begin{aligned} (ii) &|f L' \subseteq L \text{ is a sublattice s.t. } rk(L') = rk(L), \text{ then} \\ &|L/L'|^2 = \operatorname{discr}(L')/\operatorname{discr}(L). \end{aligned}$$

Ex. Let $L = D_4$. As discr $(D_4) = 4$, we have that $A_L \cong \mathbb{Z}_4$ or \mathbb{Z}_2^2 . $L = \angle e_1, e_2, e_3, e_4 > with$ $1 \xrightarrow{2}_{4} \xrightarrow{3}_{4}$. Note that $\psi := \frac{1}{2}(e_1 + e_3) \in \angle^{*}_{4}$ as $\psi \cdot e_i \in \mathbb{Z}$ $\forall i = 1, ..., 4$. $\psi := \frac{1}{2}(e_1 + e_4) \in \angle^{*}_{4}$. As $|\angle \psi + L, \psi + L > | = 4$, $A_L = \angle \psi + L, \psi + L >$ and $A_L \cong \mathbb{Z}_2^2$.

SBACK to K3 surfaces. Thm. Let X be a K3 surface. Then $(H^2(X, \mathbb{Z}), \mathcal{V})$ is a lattice isometric to $U^{\oplus s} \oplus E_8^{\oplus 2}$. Proof. By the universal coefficient theorem for cohomology (see Hatcher, Thm 3,2) we have that $H^{2}(X,\mathbb{Z}) \cong H_{2}(X,\mathbb{Z})^{*} \oplus \operatorname{Ext}_{\mathbb{Z}}^{1}(H_{1}(X,\mathbb{Z}),\mathbb{Z}).$ Recall how to compute Ext^{*}(G,Z): $\begin{array}{l} H_1(X,\mathbb{Z}) \cong Ab(\widetilde{m}_1(X)) \cong 0 \\ \Longrightarrow E \times t^1(H_1(S,\mathbb{Z}),\mathbb{Z}) \cong 0 \end{array}$ · Proj. resd. ... -> G_1 -> G_ -> G -> 0 · o -> Hom (G, Z) -> Hom (G, Z) -> ... · Cohomology at i-th position gives \Rightarrow $H^{2}(X,\mathbb{Z}) \cong H_{2}(X,\mathbb{Z})^{*}$ $Ext^{(G,\mathbb{Z})}.$ As the right hand-side is torsion-free and $b_2(X) = 22$, we have that $H^{2}(X,\mathbb{Z}) \cong \mathbb{Z}^{22}$ as Z-module. The lattice $(H^2(X, \mathbb{Z}), \vee)$ is: · Unimodular: seen before Poincaré duality $H^{2}(X,\mathbb{Z}) \cong H_{2}(X,\mathbb{Z})^{*} \cong H^{2}(X,\mathbb{Z})^{*}$ $v \mapsto \varphi_v$, where $\varphi_v(w) = v w$ So $H^{2}(X,\mathbb{Z})$ is nondegenerate: let $v \in H^{2}(X,\mathbb{Z})$ s.t. $v \cdot w = 0 \quad \forall w \in H^2(X, \mathbb{Z})$. Then $\psi_v = 0$, which implies that v = 0. So, $H^2(X, \mathbb{Z}) \longrightarrow H^2(X, \mathbb{Z})^*$. But since the discriminant group H2(X,Z)*/H2(X,Z) is trivial,

we have that H2(X,Z) is unimodular. See Milnor-Stasheff's book: Characteristic classes • Even by Wu's formula: let $w_2(T_X) \in H'(X, \mathbb{Z}/2\mathbb{Z})$ be the second Stiefel-Whitney class of the tangent bundle of X. Then, $\forall v \in H^2(X, \mathbb{Z})$, Wu's formula says that $\mathcal{V} \cong \mathcal{W}_2(\mathsf{T}_X) \cdot \mathcal{V} \pmod{2}.$ At the same time, $w_2(T_X) \equiv C_1(T_X) \pmod{2}$. Moreover, for a K3 surface X, $C_1(T_X) = 0$. So, $v^2 \equiv o \pmod{2}$. So, the thesis follows by Milnor's theorem if we prove that the lattice has signature (p,q)=(3,19). The Hodge-Riemann bilinear relations imply that $P - Q = \sum_{i+j}^{i} (-1)^{i} h^{i} = h^{o} + h^{2} - h^{1} + h^{0,2} + h^{2,2}$ = 1 + 1 - 20 + 1 + 1 = -16, P+q = 22 => (P, 2) = (3, 19). \Box

SEnriques surfaces: general properties. Recall the definition. Def. Au Euriques surface is a surface Y (smooth, conn, proj, 2-dim, alg. vor.) such that 2Ky ~0 and $P_q(Y) = q(Y) = 0$. Prop. Let Y be an Enriques surface. Then Y is minimal, $\mathcal{K}(Y) = 0$, $\mathcal{K}_Y \neq 0$, $b_1(Y) = 0$, $b_2(Y) = 10$, and $h^{1,1}(Y) = 10$. <u>Proof</u>. $ZK_{\gamma} \sim 0 \implies K_{\gamma} \equiv 0 \implies S$ is minimal. $\kappa(5) = 0$ follows from the definition. $K_{\gamma} \sim 0$ becouse, otherwise, $P_{q}(\gamma) = 1$. $b_{1}(\gamma) = 2q(\gamma) = 0$. Noether's formula gives: π^{-1} , π^{0} , ula gives: $1 = X(O_Y) = \frac{X_{top}(Y) + K_Y^2}{12} = \frac{2b_0 - 2b_1 + b_2}{12}$ $=> b_2 = 12 - 2 = 10.$ The Hodge decomposition gives that $H^{2}(Y, \mathbb{C}) \cong H^{2, \circ}(Y) \oplus H^{1, 1}(Y) \oplus H^{0, 2}(Y)$ $H^{2,\circ}(Y) \cong H^{\circ}(\Lambda^{2}\Omega_{Y}) = H^{\circ}(\omega_{Y}) \cong 0$ $H^{0,2}(Y) = H^{2,0}(Y) \cong O$ So, H^{1,1}(Y) is 10 dimensional. \square

Covers induced by torsion line bundles Recall that a torsion line bundle Lon an algebraic variety γ s.t. $\mathcal{L}^{\otimes n} \cong \mathcal{O}_{\gamma}$ with $n \in \mathbb{Z} > 0$ minimal, corresponds to an étale degree n cover $\pi: X \longrightarrow Y$ such that $\pi^* \mathcal{L} \cong \mathcal{O}_X$. This goes as follows. Let $\alpha: L^{\otimes n} \cong Y \times \mathbb{C}$, L line bundle corresponding to \mathcal{L} , p: L -> Y projection map. Define Using that L is locally trivial: UxC $X := \left\{ (y, v) \in L \mid \alpha(y, v^{\otimes n}) = (y, 1) \right\} \subseteq L$

Then $\pi: X \to Y$ is étale of degree n. $\pi^*L = X_YL$ is trivial because it has a nowhere vanishing section given by the diagonal $\Delta \subseteq X_XX \subseteq X_YL$. Finally, the degree n étale cover $\pi: X \to Y$ is doracterized by the fact that $\pi^*L \cong Q_X$.