UMass, Reading Seminar in Algebraic Geometry, Homological mirror symmetry for elliptic curves

Luca Schaffler

March 9, 2020

The main reference for what follows is Polishchuck-Zaslow's paper [PZ98. Recall the following general setup:

- $\tau \in \mathbb{C}, \operatorname{Im}(\tau)>0$.
- $E_{\tau}:=\mathbb{C} / \mathbb{Z} \oplus \tau \mathbb{Z}$.
- $E^{\tau}:=\mathbb{R}^{2} / \mathbb{Z}^{2}$ with complexified Kähler class ω such that $\tau=\int_{E^{\tau}} \omega$. This is the mirror of E_{τ}.
- $q:=e^{2 \pi i \tau}$.
- $E_{q}:=\mathbb{C}^{*} / x \sim q x$. Notice that we have the following commutative diagram:

where the bottom isomorphism is given by $[z] \mapsto\left[e^{2 \pi i z}\right]$.
- If $\varphi: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ is a holomorphic function, $\mathscr{L}_{q}(\varphi)=\mathbb{C}^{*} \times \mathbb{C} /(x, y) \sim(q x, \varphi(x) y)$ is a line bundle on E_{q}. Sometimes, we simply denote it by $\mathscr{L}(\varphi)$.
- Let $\varphi_{0}(z)=e^{-\pi i \tau-2 \pi i z}$. Recall $\mathscr{L}\left(\varphi_{0}\right)$ is our chosen degree 1 line bundle.
- Every line bundle on E_{τ} is isomorphic to $\mathscr{L}\left(t_{x}^{*} \varphi_{0} \cdot \varphi_{0}^{n-1}\right)$ for an appropriate choice of $x \in E_{\tau}$ and $n \in \mathbb{Z}$

Figure 1: The special Lagrangians L_{0} (in red), L_{1} (in green), and L_{2} (in blue).

- Finally, recall the following special case of the addition formula for theta functions:

$$
\theta(\tau, z) \theta(\tau, z+x)=\theta(2 \tau, x) \theta(2 \tau, 2 z+x)+\theta[1 / 2,0](2 \tau, x) \theta[1 / 2,0](2 \tau, 2 z+x)
$$

In the previous lecture, we defined $\Phi: \mathcal{D}^{b}\left(E_{\tau}\right) \rightarrow \mathcal{F}^{0}\left(E^{\tau}\right)$ on the subcategory of line bundles. Recall that Φ is bijective on Hom-sets and that

$$
\Phi\left(\mathscr{L}\left(t_{\alpha \tau+\beta}^{*} \varphi_{0} \cdot \varphi_{0}^{n-1}\right)\right)=((\alpha+t,(n-1) \alpha+n t),-2 \pi i \beta d x) .
$$

Today, we check that Φ is compatible with composition of morphisms in a simple nontrivial example.

1 The simplest example

Let $\tau=i A, A \in \mathbb{R}_{>0}$. Let $\mathscr{L}_{0}=\mathcal{O}, \mathscr{L}_{1}=\mathscr{L}\left(\varphi_{0}\right), \mathscr{L}_{2}=\mathscr{L}\left(\varphi_{0}\right)^{2}$. We have that

$$
\begin{aligned}
& \Phi\left(\mathscr{L}_{0}\right)=\Phi\left(\mathscr{L}\left(t_{0 \tau+0}^{*} \varphi_{0} \cdot \varphi^{0-1}\right)\right)=((t, 0), 0) \\
& \Phi\left(\mathscr{L}_{1}\right)=\Phi\left(\mathscr{L}\left(t_{0 \tau+0}^{*} \varphi_{0} \cdot \varphi^{1-1}\right)\right)=((t, t), 0) \\
& \Phi\left(\mathscr{L}_{2}\right)=\Phi\left(\mathscr{L}\left(t_{0 \tau+0}^{*} \varphi_{0} \cdot \varphi^{2-1}\right)\right)=((t, 2 t), 0) .
\end{aligned}
$$

These special Lagrangians with the trivial connection are pictured in Figure 1. What we want to check is that the following diagram commutes:

Let us describe the Hom-sets involved. We have that:

- $\operatorname{Hom}\left(\mathscr{L}_{0}, \mathscr{L}_{1}\right) \cong H^{0}\left(\mathscr{L}\left(\varphi_{0}\right)\right) \cong \mathbb{C} \theta(\tau, z) ;$
- $\operatorname{Hom}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \cong H^{0}\left(\mathscr{L}\left(\varphi_{0}\right)\right) \cong \mathbb{C} \theta(\tau, z) ;$
- $\operatorname{Hom}\left(\mathscr{L}_{0}, \mathscr{L}_{2}\right) \cong H^{0}\left(\mathscr{L}\left(\varphi_{0}\right)^{2}\right) \cong \operatorname{Span}_{\mathbb{C}}\{\theta(2 \tau, 2 z), \theta[1 / 2,0](2 \tau, 2 z)\} ;$
- $\operatorname{Hom}\left(L_{0}, L_{1}\right)=\mathbb{C} e_{1} ;$
- $\operatorname{Hom}\left(L_{1}, L_{2}\right)=\mathbb{C} e_{1}$;
- $\operatorname{Hom}\left(L_{0}, L_{2}\right)=\mathbb{C} e_{1} \oplus \mathbb{C} e_{2}$.

Let us describe the maps between Hom-sets:

$$
\begin{aligned}
\operatorname{Hom}\left(L_{0}, L_{1}\right) & \rightarrow \operatorname{Hom}\left(\mathscr{L}_{0}, \mathscr{L}_{1}\right) \\
e_{1} & \mapsto \theta(\tau, z) \\
\operatorname{Hom}\left(L_{1}, L_{2}\right) & \rightarrow \operatorname{Hom}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \\
e_{1} & \mapsto \theta(\tau, z) \\
\operatorname{Hom}\left(L_{0}, L_{2}\right) & \rightarrow \operatorname{Hom}\left(\mathscr{L}_{0}, \mathscr{L}_{2}\right) \\
e_{1} & \mapsto \theta(2 \tau, 2 z) \\
e_{2} & \mapsto \theta[1 / 2,0](2 \tau, 2 z)
\end{aligned}
$$

Next, we need to describe m_{2}, which is completely determined if we compute $m_{2}\left(e_{1}, e_{1}\right)$.

$$
m_{2}\left(e_{1}, e_{1}\right)=C\left(e_{1}, e_{1} ; e_{1}\right) e_{1}+C\left(e_{1}, e_{1} ; e_{2}\right) e_{2}
$$

where the coefficients are computed as follows:

$$
C\left(e_{1}, e_{1} ; e_{1}\right)=\sum_{[\phi]} e^{2 \pi i \int \phi^{*} \omega},
$$

where the sum run over all possible classes homolorphic maps from the closed unit disc to triangles bounded by L_{0}, L_{1}, L_{2} with vertices given by the arguments of C. $C\left(e_{1}, e_{1} ; e_{2}\right)$ is computed analogously. Note that $\int \phi^{*} \omega$ equals the area of the corresponding triangle multiplied by $i A$. We obtain that

$$
C\left(e_{1}, e_{1} ; e_{1}\right)=\sum_{n \in \mathbb{Z}} e^{-2 \pi A n^{2}}=\theta(2 \tau, 0), C\left(e_{1}, e_{1} ; e_{2}\right)=\sum_{n \in \mathbb{Z}} e^{-2 \pi A(n+1 / 2)^{2}}=\theta[1 / 2,0](2 \tau, 0) .
$$

Summarizing, the above diagram commutes provided the following equality of theta functions holds:

$$
\theta(\tau, z)^{2}=\theta(2 \tau, 0) \theta(2 \tau, 2 z)+\theta[1 / 2,0](2 \tau, 0) \theta[1 / 2,0](2 \tau, 2 z) .
$$

But this follows from the addition formula with $x=0$.

2 Extending the definition of Φ

So far we defined the functor $\Phi: \mathcal{D}^{b}\left(E_{\tau}\right) \rightarrow \mathcal{F}^{0}\left(E^{\tau}\right)$ on line bundles. We now extend it to a special class of vector bundles. We start by observing first of all that all vector bundles on E_{τ} are obtained in the following way.

Definition 2.1. Let V be an r-dimensional complex vector space and let $A: \mathbb{C}^{*} \rightarrow \mathrm{GL}(V)$ be a holomorphic function. Define the following rank r vector bundle on E_{q} :

$$
F_{q}(V, A):=\mathbb{C}^{*} \times V /(x, y) \sim(q x, A(x) y)
$$

In the special case where $V=\mathbb{C}$ and $A=\varphi: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$, the above vector bundle recovers the line bundle $\mathscr{L}(\varphi)$.

Definition 2.2. Let $\mathscr{L}\left(E_{\tau}\right)$ be the full subcategory of $\mathcal{D}^{b}\left(E_{\tau}\right)$ consisting of vector bundles in the form

$$
\mathscr{L}(\varphi) \otimes F_{q}\left(V, e^{N}\right),
$$

where V is a finite dimensional complex vector space, $N \in \operatorname{End}(V)$ a nilpotent endomorphism, and $\varphi: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ a holomorphic map.

Proposition 2.3 ([PZ98, Proposition 2]). Let V be a finite dimensional complex vector space, $N \in \operatorname{End}(V)$ a nilpotent endomorphism, and $\varphi: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ a holomorphic map. Then

$$
H^{0}\left(\mathscr{L}(\varphi) \otimes F_{q}\left(V, e^{N}\right)\right) \cong H^{0}(\mathscr{L}(\varphi)) \otimes V
$$

The next definition extends Φ to $\mathscr{L}\left(E_{\tau}\right)$.
Definition 2.4. On objects,

$$
\begin{aligned}
\Phi: \mathscr{L}\left(E_{\tau}\right) & \rightarrow \mathcal{F}^{0}\left(E^{\tau}\right) \\
\mathscr{L}\left(t_{\alpha \tau+\beta}^{*} \varphi_{0} \cdot \varphi_{0}^{n-1}\right) \otimes F_{q}\left(V, e^{N}\right) & \mapsto(\Lambda, A),
\end{aligned}
$$

where:

- $\Lambda=(\alpha+t,(n-1) \alpha+n t)$ is a line parametrized by t, and
- $A=\left(-2 \pi i \beta \mathrm{id}_{V}+N\right) d x$ is a flat connection of the line.

On morphisms, consider

$$
\mathrm{Ob}_{1}=\mathscr{L}\left(t_{\alpha_{1} \tau+\beta_{1}}^{*} \varphi_{0} \cdot \varphi_{0}^{n_{1}-1}\right) \otimes F_{q}\left(V_{1}, e^{N_{1}}\right) \rightarrow \mathscr{L}\left(t_{\alpha_{2} \tau+\beta_{2}}^{*} \varphi_{0} \cdot \varphi_{0}^{n_{2}-1}\right) \otimes F_{q}\left(V_{2}, e^{N_{2}}\right)=\mathrm{Ob}_{2} .
$$

Let $\Phi\left(\mathrm{Ob}_{i}\right)=\left(\Lambda_{i}, A_{i}\right), i=1,2$. We want to define a morphism $\left(\Lambda_{1}, A_{1}\right) \rightarrow\left(\Lambda_{2}, A_{2}\right)$ in a functorial way. We have that

$$
\operatorname{Hom}\left(\mathrm{Ob}_{1}, \mathrm{Ob}_{2}\right) \cong H^{0}\left(\mathscr{L}\left(t_{\alpha_{2} \tau+\beta_{2}}^{*} \varphi_{0} \cdot \varphi_{0}^{n_{2}-1}\right) \otimes \mathscr{L}\left(t_{\alpha_{1} \tau+\beta_{1}}^{*} \varphi_{0} \cdot \varphi_{0}^{n_{1}-1}\right)^{\vee} \otimes F_{q}\left(V_{2}, e^{N_{2}}\right) \otimes F_{q}\left(V_{1}, e^{N_{1}}\right)^{\vee}\right)
$$

$$
\begin{aligned}
& \cong H^{0}\left(\mathscr{L}\left(t_{\alpha \tau+\beta}^{*} \varphi_{0}^{n_{2}-n_{1}}\right) \otimes F_{q}\left(V_{1}^{\vee} \otimes V_{2}, e^{\mathbf{1} \otimes N_{2}-N_{1}^{\vee} \otimes \mathbf{1}}\right)\right) \\
& \cong H^{0}\left(\mathscr{L}\left(t_{\alpha \tau+\beta}^{*} \varphi_{0}^{n_{2}-n_{1}}\right)\right) \otimes V_{1}^{\vee} \otimes V_{2} \\
& =\operatorname{Span}_{\mathbb{C}}\left\{f_{k}=\theta\left[k /\left(n_{2}-n_{1}\right), 0\right]\left(\left(n_{2}-n_{1}\right) \tau,\left(n_{2}-n_{1}\right)(z+\alpha \tau) \beta\right) \mid k \in \mathbb{Z} /\left(n_{2}-n_{1}\right) \mathbb{Z}\right\} \\
& \quad \otimes V_{1}^{\vee} \otimes V_{2},
\end{aligned}
$$

where $\alpha=\frac{\alpha_{2}-\alpha_{1}}{n_{2}-n_{1}}, \beta=\frac{\beta_{2}-\beta_{1}}{n_{2}-n_{1}}$. Moreover,

$$
\operatorname{Hom}\left(\left(\Lambda_{1}, A_{1}\right),\left(\Lambda_{2}, A_{2}\right)\right)=\bigoplus_{e_{k} \in \Lambda_{1} \cap \Lambda_{2}} V_{1}^{\vee} \otimes V_{2} \cdot e_{k}
$$

where

$$
e_{k}=\left(\frac{k+\alpha_{2}-\alpha_{1}}{n_{2}-n_{1}}, \frac{n_{1} k+n_{1} \alpha_{2}-n_{2} \alpha_{1}}{n_{2}-n_{1}}\right), k \in \mathbb{Z} /\left(n_{2}-n_{1}\right) \mathbb{Z}
$$

So at the level of morphisms, we define

$$
\Phi\left(f_{k} \otimes T\right)=e^{-\pi i \tau \alpha^{2}\left(n_{2}-n_{1}\right)} e^{\alpha\left(N_{2}-N_{1}^{\vee}-2 \pi i\left(n_{2}-n_{1}\right) \beta\right)} T e_{k}
$$

The next step is to extend Φ to all vector bundles.

References

[PZ98] Alexander Polishchuk and Eric Zaslow. Categorical mirror symmetry: the elliptic curve. Adv. Theor. Math. Phys. 2 (1998), no. 2, 443-470.

