The KSBA compactification of the moduli space of $D_{1.6}$ -polarized Enriques surfaces

Luca Schaffler, University of Georgia

JMM 2017, Atlanta

AMS Contributed Paper Session on Algebraic Geometry

January 6, 2017

Motivation

Important problem: given a moduli space M, provide a compactification \overline{M} with "good" properties:

- Functorial;
- Natural;
- Interesting structure to study.

Examples

"Model" compactifications: $\overline{M}_{g,n}$, $\overline{A}_g^{2^{\mathrm{nd}}\mathit{Vor}}$.

My focus is on Enriques surfaces.

Compactification via **stable pairs**: (X, B) semi log canonical with $K_X + B$ ample (KSBA compactification).

$D_{1,6}$ -polarized Enriques surfaces

- ▶ **Enriques surface** S: smooth projective connected 2-dim. variety/ \mathbb{C} such that $2K_S \sim 0$ and $h^0(S, \omega_S), h^1(S, \mathcal{O}_S) = 0$.
- ▶ S is $D_{1,6}$ -**polarized** if $D_{1,6} \stackrel{\text{primitive}}{\hookrightarrow} \operatorname{Pic}(S)$ with extra conditions (this describes a 4-dimensional family).
- ▶ $D_{1,6} \subset \mathbb{Z} \oplus \mathbb{Z}^6(-1)$ sublattice of vectors of even square.

Why this example?

The choice of divisor and the moduli space of stable pairs

Let S be a $D_{1.6}$ -polarized Enriques surface.

- ▶ $D_{1,6}$ -polarization on $S \implies$ three genus 1 fibrations on $S \implies$ six half-fibers $E_1, E'_1, E_2, E'_2, E_3, E'_3$.
- ▶ Consider stable pairs $(S, \epsilon \sum_{i=1}^{3} (E_i + E'_i))$, $0 < \epsilon \ll 1$, $\epsilon \in \mathbb{Q}$.

Moduli space of interest: $\overline{M}_{D_{1,6}}$, defined as the Zariski closure in \overline{M}^{KSBA} of $M_{D_{1,6}}$ which parametrizes $(S, \epsilon \sum_{i=1}^{3} (E_i + E_i'))$.

Main results

Theorem (S, 2016)

- 1) $\overline{M}_{D_{1,6}} \cong \overline{M}^{STP}/(\text{finite group})$, where \overline{M}^{STP} is a toric variety which is a moduli space parametrizing stable toric pairs.
- 2) Complete classification of the stable pairs parametrized by points in $\overline{M}_{D_{1.6}}$. In particular:
 - ▶ Isolated singularities: A_1 , $\frac{(1,1)}{4}$.
 - ▶ Smooth irreducible components degenerations: $D_{1,6}$ -polarized Enriques surfaces, $\mathbb{P}^1 \times \mathbb{P}^1$, genus 1 fibrations, weak del Pezzo surfaces of degree 1, del Pezzo surfaces of degree 2 and 4.

Main results

Theorem (S, 2016, continued)

3)
$$\partial \overline{M}_{D_{1,6}} = D_1 \cup D_2 \cup C$$
.

4) $\exists \overline{M}_{D_{1,6}} \stackrel{\textit{birational}}{\longrightarrow} \overline{\mathcal{D}/\Gamma}^{\textit{BB}}$.

Thank you for your attention!

For the figures I used the software GeoGebra.

$\partial \overline{M}_{D_{1,6}}$ and modular interpretation of its points

$\partial \overline{M}_{D_{1,6}}$ and $\partial \overline{\mathcal{D}/\Gamma}^{BB}$ compared

