K3 surfaces with \mathbb{Z}_2^2 symplectic action

Luca Schaffler

Department of Mathematics and Statistics, University of Massachusetts Amherst

UMass Amherst

Main goal & motivation

Given a K3 surface X, it is hard in general to determine the lattice $\mathrm{NS}(X)$. If $G \leq \mathrm{Aut}(X)$ finite and abelian acts symplectically on X, then $\mathrm{NS}(X)$ has extra structure that helps determine it. For projective X with G symplectic action and minimal Picard number, $\mathrm{NS}(X)$ is computed in [1]. We study a special family of K3 surfaces X with \mathbb{Z}_2^2 symplectic action whose $\mathrm{NS}(X)$ was not known. These are relevant because of their relation with the double covers of \mathbb{P}^2 branched along six lines, and because they give an alternative construction of the Kummer surface $\mathrm{Km}\left(E_{\sqrt{-1}}\times E_{\sqrt{-1}}\right)$.

Background

X projective K3 surface, $G \leq \operatorname{Aut}(X)$. **Def:** $G \curvearrowright X$ is symplectic if

$$g^* \colon H^0(\omega_X) \to H^0(\omega_X),$$

is the identity for all $g \in G$.

Facts: If G is also finite and abelian, then

- The possible G are classified (Nikulin).
- The lattice

$$\Omega_G = (H^2(X; \mathbb{Z})^G)^{\perp} \subset NS(X),$$

only depends on G and not on the action (Nikulin).

• There is a $(19 - \text{rk}(\Omega_G))$ -dimensional family of projective K3 surfaces X with G symplectic action. If $\text{rk}(\Omega_G) + 1$, then NS(X) is computed by Garbagnati-Sarti.

Case of interest: $G = \mathbb{Z}_2^2$. There is a 7 dimensional family of K3 surfaces with \mathbb{Z}_2^2 symplectic action.

Triple-double K3 surfaces

Consider three pairs of lines on $Bl_3\mathbb{P}^2$ (Figure 1). A *triple-double* K3 surface X is obtained by composing three double covers

$$X \xrightarrow{\mathbb{Z}_2} \xrightarrow{\mathbb{Z}_2} \operatorname{Bl}_3 \mathbb{P}^2,$$

where the first one is branched along the first pair of lines, and so on.

Figure 1: Three pairs of lines on $Bl_3\mathbb{P}^2$ (toric picture)

The *i*-th double cover corresponds to an involution $\alpha_i \colon X \to X$. The group

 $\{\mathrm{id}_X, \alpha_1 \circ \alpha_2, \alpha_1 \circ \alpha_3, \alpha_2 \circ \alpha_3\} \cong \mathbb{Z}_2^2,$

acts symplectically on X.

24 smooth rational curves

Figure 2: Preimage under $X \to \operatorname{Bl}_3 \mathbb{P}^2$ of the (-1)-curves. Two lines intersects if and only if they share a dot. The red curves form a Kodaira type II^* fiber together with the section R_3

Main theorem (S, 2017, [2])

Let X be a triple-double K3 surface with minimal Picard number. Then

- (i) NS(X) is generated by R_1, \ldots, R_{24} , has rank 16, and discriminant group $\mathbb{Z}_2^2 \oplus \mathbb{Z}_4^2$.
- (ii) $NS(X) \cong U \oplus E_8 \oplus Q$ (where Q is explicit) and $T_X \cong U \oplus U(2) \oplus \begin{pmatrix} -4 & 0 \\ 0 & -4 \end{pmatrix}$.
- (iii) The Kummer surface $\operatorname{Km}\left(E_{\sqrt{-1}}\times E_{\sqrt{-1}}\right)$ appears as a specialization of this 4-dimensional family. Six lines in \mathbb{P}^2 with four triple intersection points give rise to this Kummer surface.
- (iv) \mathbb{Z}_2^3 does not act symplectically on X.

Idea of proof

- $M = \langle R_1, \dots, R_{24} \rangle \subseteq \operatorname{NS}(X)$ has finite index. Then $M = \operatorname{NS}(X)$ because no isotropic element in M^*/M is in $\operatorname{NS}(X)$.
- $T_{\rm Km} \cong \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \hookrightarrow T_X$ and the moduli space of M-polarized K3 surfaces is connected.
- $\Omega_{\mathbb{Z}_3}$ does not embed primitively in NS(X).

Why new example

NS(X) and T_X are determined by [1] if there is G finite and abelian acting symplectically on X with $\operatorname{rk}(\Omega_G) + 1 = 16$. This equality is true if and only if $G \cong \mathbb{Z}_2^4$, but \mathbb{Z}_2^4 does not act symplectically on X by Main theorem(iv). We also show that $X \ncong W/\mathbb{Z}_2^3$ for some K3 surface W with \mathbb{Z}_2^3 symplectic action.

\mathbb{Z}_2^n -covers of \mathbb{P}^2 and six lines

 \mathbb{Z}_2^n covers of \mathbb{P}^2 branched along six lines:

Y = Hirzebruch-Kummer covering (n = 5).

X = triple-double K3 surface (n = 3).

 $Z = \text{double cover of } \mathbb{P}^2.$

We have other K3 surfaces X', Y', Y'' and degree 2 rational maps:

In [2] NS(X'), $T_{X'}$ are also determined, but these are not new: $\mathbb{Z}_2^4 \curvearrowright X'$ symplectically.

Future project

I am working on analogous questions for the K3 surfaces Y', Y''.

References

- [1] A. Garbagnati, A. Sarti, *Elliptic fibrations and symplectic* automorphisms on K3 surfaces, Comm. Algebra 37 (2009), no. 10, 3601–3631.
- [2] L. Schaffler, The Néron-Severi lattice of some special K3 surfaces with \mathbb{Z}_2^2 symplectic action, preprint (submitted), arXiv:1707.09732

Link to paper – Contact

email: schaffler@math.umass.edu

web: people.math.umass.edu/~schaffler/