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1 What is a lattice?

Definition 1.1. A lattice is a pair (L, ·), where L is a finitely generated free abelian group
and · : L× L→ Z such that (v, w) 7→ v · w is a symmetric bilinear form.

• L is even if v2 := v · v is an even number for all v ∈ L.

• The Gram matrix of L with respect to a basis {e1, . . . , en} for L is the matrix of
intersection (ei · ej)1≤i,j≤n.

• The rank of L is defined to be the rank of one of its Gram matrices.

• A lattice L is unimodular if the determinant of one of its Gram matrices is ±1.
Equivalently, L of maximal rank is unimodular provided the discriminant group
L∗/L is trivial (we let L∗ = HomZ(L,Z)).

• We can define the signature of L as the signature of one of its Gram matrices. By
saying signature (a, b), we mean that a (resp. b) is the number of positive (resp.
negative) eigenvalues. If L has signature (a, b), then we say that L is indefinite
provided a, b > 0.

Example 1.2. U = (Z2, ·) with (v1, v2) · (w1, w2) = v1w2 + v2w1 is called the hyperbolic
plane. Check that this is even, unimodular, and of signature (1, 1).
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Example 1.3. E8 = (Z8, B), where

B =



−2 1 0 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 1
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 0
0 0 0 0 1 0 0 −2


.

This matrix can be reconstructed from the E8 Dynkin diagram. The lattice E8 is even,
unimodular, and of signature (0, 8).

Definition 1.4. Let L1, L2 be two lattices. We say that L1, L2 are isometric provided
there exists a group homomorphism f : L1 → L2 such that f(v · w) = f(v) · f(w) for all
v, w ∈ L1.

Theorem 1.5. [Mil58] Even indefinite unimodular lattices of the same signature are iso-
metric.

Example 1.6. Let L be an even unimodular lattice of signature (1, 9). Then L ∼= U ⊕E8.

2 Examples of lattices from geometry

Let X be a complex n-dimensional manifold. Then we have the homology groups
Hr(X,Z), which recall are obtained from the chain complex

. . .→ Cr+1
∂r+1−−→ Cr

∂r−→ Cr−1 → . . . ,

where Cr is the free abelian group generated by the singular r-simplices. One defines
Hr(X,Z) = (ker ∂r)/(im∂r+1). Recall that H1(X,Z) is the abelianization of π1(X).

By dualizing the above chain complex

. . .→ C∗r−1
δr−1−−→ C∗r

δr−→ C∗r+1 → . . .

we obtain the cohomology groups Hr(X,Z) = (ker δr)/(imδr−1). Warning: in general,
Hr(X,Z) � Hr(X,Z)∗. One of the advantages of cohomology insrtead of homology is that
we have a cup product ^ : Ha(X,Z)×Hb(X,Z) → Ha+b(X,Z). In particular, we have a
(−1)n-symmetric bilinear form

^ : Hn(X,Z)×Hn(X,Z)→ H2n(X,Z) ∼= Z,

where the last isomorphism is true because X is orientable. Notice that Hn(X,Z) may
have torsion. So, if n is even, then (Hn(X,Z),^) is not necessarily a lattice. For a K3
surface X, we can say a lot about (H2(X,Z),^).
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Theorem 2.1. For a K3 surface X, (H2(X,Z),^) is a lattice isometric to U⊕3 ⊕ E⊕28 .

Proof. There are different ingredients that contribute to the proof:

(1) By the universal coefficient theorem for cohomology, we have that

H2(X,Z) ∼= H2(X,Z)∗ ⊕ Ext1Z(H1(X,Z),Z).

But H1(X,Z) ∼= Ab(π1(X)) ∼= 0, so H2(X,Z) ∼= H2(X,Z)∗, and hence H2(X,Z) is
torsion-free. So (H2(X,Z),^) is a lattice.

(2) The topological Euler characteristic
∑

i(−1)irk(H i(X,Z)) is equal to 24. This can be
computed by using the fact that all K3 surfaces are diffeomorphic to each other, and
by computing the topological Euler characteristic for the double cover of P2 branched
along a smooth sextic curve (which is an example of K3 surface). This implies that
H2(X,Z) ∼= Z22.

(3) H2(X,Z) is unimodular. To prove this, notice that

H2(X,Z) ∼= H2(X,Z)∗ ∼= H2(X,Z)∗,

where the first isomorphism was discussed in part (1), and the second isomorphism
is guaranteed by Poincaré duality. So the discriminant group H2(X,Z)∗/H2(X,Z)
is trivial, implying unimodularity.

(4) H2(X,Z) is even by Wu’s formula. More precisely, let w2(TX) ∈ H2(X,Z/2Z) be the
second Stiefel-Whitney class of the tangent bundle of X. Let v ∈ H2(X,Z). Then
Wu’s formula says that

v2 ≡ w2(TX) · v (mod 2).

But w2(TX) ≡ c1(TX) (mod 2), and for a K3 surface c1(TX) = 0. So the form is even.

(5) The Hodge-Riemann bilinear relations imply that (H2(X,Z),^) has signature (3, 19).

Notice that the lattice U⊕3⊕E⊕28 is also even, unimodular, and of signature (3, 19). So
we can conclude that (H2(X,Z),^) is isometric to U⊕3 ⊕ E⊕28 by Theorem 1.5.

Remark 2.2. Let X, Y be two K3 surfaces. Then we have an isometry

(H2(X,Z),^) ∼= (H2(Y,Z),^).

The idea behind the Torelli theorem is that if the isometry above has an additional property,
then X ∼= Y as complex manifolds.
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3 The Torelli theorem

For a complex manifold X of dimension n, one can define the de Rham cohomol-
ogy groups Hr

dR(X,C) of classes of closed complex valued differential r-forms. If p, q
are positive integers such that p + q = r, then one can consider the vector subspace
Hp,q(X) ⊆ Hr

dR(X,C) of classes of closed (p, q)-forms. In local coordinates z1, . . . , zn, a
(p, q)-form can be written as a C-linear combination of terms of the form

fdzi1 ∧ . . . ∧ dzip ∧ dzj1 ∧ . . . ∧ dzjq

where f is a complex C∞ function. If X is a compact Kähler manifold (a smooth mani-
fold with a Riemannian metric whose holonomy group is contained in U(n)), the Hodge
decomposition says that

Hr
dR(X,C) ∼= Hr,0(X)⊕Hr−1,1(X)⊕ . . .⊕H1,r−1(X)⊕H0,r(X).

Notice that
Hr

dR(X,C) ∼= Hr(X,C) ∼= Hr(X,Z)⊗ C.

where the first isomorphism is the content of de Rham theorem.

Torelli Theorem 3.1 (Piatetski-Shapiro–Shafarevich (algebraic case), Burns-Rapoport
(analytic case)). Let X and Y be two K3 surfaces. Assume there is an isometry

ψ : H2(X,Z)→ H2(Y,Z)

such that the induced isomorphism H2(X,C) → H2(Y,C) preserves the Hodge decompo-
sitions (such ψ is called a Hodge isometry). Then X and Y are isomorphic as complex
manifolds. Moreover, if ψ(KX) ∩ KY 6= ∅, then there exists a unique isomorphism of
complex manifolds f : Y → X such that f ∗ : H2(X,Z)→ H2(Y,Z) equals ψ.

Remark 3.2.

• The above theorem is called Torelli theorem, but it is not due to Ruggiero Torelli.
The name is because of its analogy with Torelli’s theorem for curves.

• If ψ : H2(X,Z) → H2(Y,Z) is a Hodge isometry and f : Y → X is an isomorphism,
then it is not necessarily true that f ∗ = ψ.

• KX is the Kähler cone of X, which is the cone generated by the Kähler classes, i.e.,
the classes in H1,1(X) induced by the Kähler forms on X.
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4 Application of the Torelli theorem

Theorem 4.1. Let X be a K3 surface. Then Aut(X) is isomorphic to the group of Hodge
isometries of H2(X,Z) such that ψ(KX) ∩ KX 6= ∅.

Proof. Let G be the group of Hodge isometries of H2(X,Z) such that ψ(KX) ∩ KX 6= ∅.
The map Aut(X) → G such that f 7→ f ∗ is surjective by the Torelli theorem. For the
injectivity see [Huy16, Chapter 15, Proposition 2.1].
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