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Motivation

This talk is about this kind of pictures!

Wikimedia Commons:

https://upload.wikimedia.org/wikipedia/commons/e/e6/Order-3_heptakis_heptagonal_tiling.png
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Motivation

Esher, M.C.: Circle Limit IV. From http://www.mcescher.com
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Motivation

Question:

what is the mathematics behind these pictures?

To understand it, we need to start from lattice theory.
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What is a lattice?

Definition

A lattice is a pair (Zn,B), where B ∈ Mn(Z) is nondegenerate and
symmetric.

Observation: The matrix B defines the following symmetric
bilinear form:

Zn × Zn → Z,

(x , y) 7→ (x1, . . . , xn)B

y1
...
yn

 =: x · y
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Hyperbolic lattices

Given a lattice (Zn,B), the eigenvalues of B are all nonzero real
numbers. Therefore we can define the signature (p, q) of B, where

p = number of positive eigenvalues of B,

q = number of negative eigenvalues of B.

Definition

A lattice of signature (1, q) with q > 0 is called hyperbolic.

Example

Z3 together with
(

1 0 0
0 −1 0
0 0 −1

)
is an example of hyperbolic lattice.
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Hyperbolic spaces

Definition

Let (Zn,B) be a lattice.

I {x ∈ Rn | x · x > 0} = C q C ′ (these are called light cones);

I Fix C . Then the hyperbolic space is defined to be

Λ = C/R>0.
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Slicing the hyperbolic space

Now that we know what the hyperbolic space is, how can we
subdivide it like this?

Wikimedia Commons:

https://upload.wikimedia.org/wikipedia/commons/e/e6/Order-3_heptakis_heptagonal_tiling.png
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Reflections of hyperbolic lattices

Definition

Let (Zn,B) be a lattice and let α ∈ Zn such that

ρα : x 7→ x − 2
α · x
α · α

α

is defined over Z. Then ρα is the reflection with respect to α.
The locus Hα ⊂ Rn fixed by ρα is called the mirror of ρα.
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Reflections of hyperbolic lattices

Observation

Given Hα such that Hα ∩ C 6= ∅, then Hα defines a hyperplane hα
in the hyperbolic space Λ.
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Groups of reflections

Idea to create tilings of the hyperbolic space Λ:

I G = group generated by reflections;

I The mirrors of the reflections in G decompose Λ into
G -equivalent cells!

Question: Given G , how to determine a G -cell in Λ?

Answer: Vinberg’s algorithm.
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Concrete example

Lattice: (Z4, diag(1,−1,−1,−1));

Reflection group: G = 〈ρα | α · α = −1〉;

G -fundamental cell:
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Application to algebraic geometry

Input:

I (Zn+2,B) lattice of signature (2, n). If ` · ` = 0, then `⊥/` is
a hyperbolic lattice;

I {[v ] ∈ P(Cn+2) | v · v = 0 and v · v > 0} = D qD′;

I Γ = group of isometries of the lattice =⇒ D/Γ is a
quasi-projective variety (theorem of Baily-Borel);

I Σ = data of “compatible” subdivisions of the light cones
C ⊂ `⊥/` for all ` ∈ Zn such that ` · ` = 0.

Output: D/Γ ⊆ D/Γ
Σ

projective compactification, called
Looijenga’s semitoric compactification.
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Thank you for your attention!

Main references:

1 Looijenga, E.: Compactifications defined by arrangements. II.
Locally symmetric varieties of type IV (2003).

2 Vinberg, È.B.: Some arithmetical discrete groups in
Lobačevskĭı spaces (1975).

For the figures I used the software GeoGebra.
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