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Main goal & motivation

Pascal’s theorem gives a synthetic geomet-
ric condition for six points in P? to lie on
a conic (see Figure 1 on the right). In
higher dimension, one could ask: is there a
coordinate-free condition for d + 4 points in
P? to lie on a degree d rational normal curve
(rnc)? In this work we find many of these
by writing in the Grassmann-

conditions
Cayley algebra the defining equations of the

parameter space of d + 4 ordered points in
P that lie on a rnc.

Grassmann-Cayley algebra

Def: The Grassmann-Cayley algebra of a vec-
tor space V is its exterior algebra together
with the meet and join operations: A, V.

Ex: a,b,c € P? are aligned < a VbV c=0.

Pascal’s theorem: a,b,c,d, e, f € P? lie
on a conic if and only if
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This can be rewritten (!) as
labc||ade||bdf||ce f| — |abd||acel||lbef]|def| = 0.

In the Grassmann-Cayley algebra it becomes:
((aVbh)A(dVe))V((aV fINdVe))V((eV fINDVe)) = 0.

The geometric interpretation of the above ex-
pression gives Pascal’s theorem (see Figure 1).

Cayley factorization problem: There is
no general algorithm to rewrite a polynomial
in the Grassmann-Cayley algebra.

Pascal’s theorem

Figure 1: a,...,f € P? lie on a conic if and only if ab N de,

af Ndec, ef Nbe are aligned.

d + 4 points on degree d rnc

Def: Vj,, = the closure of the locus in (P%)"
of n-tuples of distinct points that lie on a rnc.

Idea: If we have the equations for Vg1,
then we could attempt to rewrite them in the
Grassmann-Cayley algebra.

Thm [1]: Vj444 union the locus of degen-
erate point configurations is cut out by the
equations ¢y = 0 for I = {11,...,155} C
{1,...,d+ 4}, where 1y is obtained from
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by operating the following substitution:

[gimin] > (—1)° it L4 5.1€|.

Proof of main theorem

(1) Start from the Grassmann-Cayley algebra
expression (some joins are omitted)
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= 0.

(2) Expand it using the definitions of A and V.

(3) Use appropriate syzygies to prove that what
we obtained is equivalent to v; = 0.

Rmk: We find many different expressions
equivalent to (1), giving distinct reformula-
tions of the main theorem.
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Figure 2: Seven points in P? on a twisted cubic. The three circled

points and P are coplanar. [[;;;, denotes the plane containing

Pijapk

Main theorem (CS, 2019, [2])

Let lpﬁ, ..

e [he intersection of the line F; F;, with the hy
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e ['he pomts P, ..., P
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., Py.4 € P4 be points in general linear position. Then P, . .
normal curve if and only if for every I = {i; < --- <ig} C{l,...,d+4}, [‘={j1 < --- <
Jd—o}, the following d + 1 points lie on a hyperplane:
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., P4 lie on a rational
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perplane P, P Py - - - P

perplane P 5 P - P
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(See Figure 2 for a graphical visualization of this condition ford =3 and I ={1,...,6}.)
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Application to twisted cubics

Thm (H. White, 1915): Let P,..., P;

be points on a twisted cubic. Let Hy, ..., H-
be planes whose union contains the 21
lines spanned by the seven points. Then

Hi, ..., H; osculate a second twisted cubic.

Thm (CS, 2019): With the above nota-
tion, the following planes intersect at a point

contained in the plane H~:

c»]%ﬁlr’1JEJQ ——-]5[4r"1J515 M 15[7;
1l_ffé M }323-"-_[{5 [ ]3&;(’14517;
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Future project

Consider the embedding v: P’ oV, po

D1, ..., o € P’ lie on a quadric < the 10 x 10
determinant |v(p1) - - - v(p1g)| is zero. Rewrit-
ing this determinant in the Grassmann-Cayley
algebra is called the Turnbull-Young prob-
lem. We plan to use the techniques we de-
veloped to work on this problem.
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