A Pascal's theorem for rational normal curves

Main goal & motivation

Pascal's theorem gives a synthetic geometric condition for six points in \mathbb{P}^2 to lie on a conic (see Figure 1 on the right). In higher dimension, one could ask: is there a coordinate-free condition for d+4 points in \mathbb{P}^d to lie on a degree d rational normal curve (rnc)? In this work we find many of these conditions by writing in the Grassmann-Cayley algebra the defining equations of the parameter space of d + 4 ordered points in \mathbb{P}^d that lie on a rnc.

Grassmann-Cayley algebra

Def: The Grassmann-Cayley algebra of a vector space V is its exterior algebra together with the meet and join operations: \land , \lor .

Ex: $a, b, c \in \mathbb{P}^2$ are aligned $\Leftrightarrow a \lor b \lor c = 0$. **Pascal's theorem:** $a, b, c, d, e, f \in \mathbb{P}^2$ lie

on a conic if and only if

 $egin{array}{ccc} b_0^2 & c_0^2 \ b_1^2 & c_1^2 \end{array} \ egin{array}{ccc} b_1^2 & c_1^2 \end{array}$ $a_0^2\ a_1^2\ a_2^2$ $b_2^{\frac{1}{2}} c_2^{\frac{1}{2}}$ $|a_0a_1 \ b_0b_1 \ c_0c_1 \ d_0d_1 \ e_0e_1 \ f_0f_1|$ $|a_0a_2 \ b_0b_2 \ c_0c_2 \ d_0d_2 \ e_0e_2 \ f_0f_2|$ $ig| a_1 a_2 \ b_1 b_2 \ c_1 c_2 \ d_1 d_2 \ e_1 e_2 \ f_1 f_2 ig|$

This can be rewritten (!) as

|abc||ade||bdf||cef| - |abd||ace||bcf||def| = 0.

In the Grassmann-Cayley algebra it becomes: $((a \lor b) \land (d \lor e)) \lor ((a \lor f) \land (d \lor c)) \lor ((e \lor f) \land (b \lor c)) = 0.$

The geometric interpretation of the above expression gives Pascal's theorem (see Figure 1).

Cayley factorization problem: There is no general algorithm to rewrite a polynomial in the Grassmann-Cayley algebra.

Alessio Caminata and Luca Schaffler Université de Neuchâtel, University of Massachusetts Amherst

Pascal's theorem

Figure 1: $a, \ldots, f \in \mathbb{P}^2$ lie on a conic if and only if $\overline{ab} \cap \overline{de}$, $\overline{af} \cap \overline{dc}, \ \overline{ef} \cap \overline{bc} \ \text{are aligned}.$

d + 4 points on degree d rnc

Def: $V_{d,n}$ = the closure of the locus in $(\mathbb{P}^d)^n$ of *n*-tuples of distinct points that lie on a rnc.

Idea: If we have the equations for $V_{d,d+4}$, then we could attempt to rewrite them in the Grassmann-Cayley algebra.

Thm [1]: $V_{d,d+4}$ union the locus of degenerate point configurations is cut out by the equations $\psi_I = 0$ for $I = \{i_1, \ldots, i_6\} \subseteq$ $\{1, \ldots, d+4\}$, where ψ_I is obtained from $[i_1i_2i_3][i_1i_4i_5][i_2i_4i_6][i_3i_5i_6] - [i_1i_2i_4][i_1i_3i_5][i_2i_3i_6][i_4i_5i_6]$

by operating the following substitution: $[i_{\ell}i_{m}i_{n}] \mapsto (-1)^{S(i_{\ell},i_{m},i_{n})} |\{i_{\ell}i_{m}i_{n}\}^{c}|.$

Main theorem (CS, 2019, [2])

Let $P_1, \ldots, P_{d+4} \in \mathbb{P}^d_{\mathbb{C}}$ be points in general linear position. Then P_1, \ldots, P_{d+4} lie on a rational normal curve if and only if for every $I = \{i_1 < \cdots < i_6\} \subseteq \{1, \ldots, d+4\}, I^c = \{j_1 < \cdots < i_6\}$ j_{d-2} , the following d+1 points lie on a hyperplane: • The intersection of the line $P_{i_1}P_{i_2}$ with the hyperplane $P_{i_4}P_{i_5}P_{j_1}\cdots P_{j_{d-2}}$; • The intersection of the line $P_{i_2}P_{i_3}$ with the hyperplane $P_{i_5}P_{i_6}P_{j_1}\cdots P_{j_{d-2}}$; • The intersection of the line $P_{i_3}P_{i_4}$ with the hyperplane $P_{i_1}P_{i_6}P_{j_1}\cdots P_{j_{d-2}}$; • The points $P_{j_1}, \ldots, P_{j_{d-2}}$. (See Figure 2 for a graphical visualization of this condition for d = 3 and $I = \{1, \ldots, 6\}$.)

we obtained is equivalent to $\psi_I = 0$. **Rmk:** We find many different expressions equivalent to (1), giving distinct reformulations of the main theorem.

Proof of main theorem

(1) Start from the Grassmann-Cayley algebra expression (some joins are omitted)

$$(P_{i_1}P_{i_2} \wedge P_{i_4}P_{i_5}P_{j_1} \cdots P_{j_{d-2}}) \vee (P_{i_2}P_{i_3} \wedge P_{i_5}P_{i_6}P_{j_1} \cdots P_{j_{d-2}}) \vee (P_{i_3}P_{i_4} \wedge P_{i_6}P_{i_1}P_{j_1} \cdots P_{j_{d-2}}) \vee P_{j_1} \cdots P_{j_{d-2}} = 0.$$

(2) Expand it using the definitions of \land and \lor . (3) Use appropriate syzygies to prove that what

Figure 2: Seven points in \mathbb{P}^3 on a twisted cubic. The three circled points and P_7 are coplanar. \prod_{ijk} denotes the plane containing $P_i, P_j, P_k.$

Application to twisted cubics

Consider the embedding $v \colon \mathbb{P}^3 \xrightarrow{\mathcal{O}(2)} \mathbb{P}^9$. $p_1, \ldots, p_{10} \in \mathbb{P}^3$ lie on a quadric \Leftrightarrow the 10×10 determinant $|v(p_1) \cdots v(p_{10})|$ is zero. Rewriting this determinant in the Grassmann-Cayley algebra is called the Turnbull-Young prob*lem.* We plan to use the techniques we developed to work on this problem.

[1] A. Can for po 340 (2	
[2] A. Can curves	
[3] H. Wh Natior 8, pp.	
]	

UMassAmherst

Thm (H. White, 1915): Let P_1, \ldots, P_7 be points on a twisted cubic. Let H_1, \ldots, H_7 be planes whose union contains the 21 lines spanned by the seven points. Then H_1, \ldots, H_7 osculate a second twisted cubic.

Thm (CS, 2019): With the above notation, the following planes intersect at a point contained in the plane H_7 :

- $H_1 \cap H_2 + H_4 \cap H_5 \cap H_7;$
- $H_2 \cap H_3 + H_5 \cap H_6 \cap H_7;$
- $H_3 \cap H_4 + H_6 \cap H_1 \cap H_7$.

Future project

References

minata, N. Giansiracusa, H.-B. Moon, and L. Schaffler. *Equations* point configurations to lie on a rational normal curve. Adv. Math. 2018), 653–683.

aminata and L. Schaffler. A Pascal's theorem for rational normal s. Preprint (submitted), arXiv:1903.00460

hite. Seven points on a twisted cubic curve. Proceedings of the nal Academy of Sciences of the United States of America, Vol. 1, No. 464-466, 1915.

Link to paper – Contact

email: alessio.caminata@unine.ch schaffler@math.umass.edu