# A Pascal's theorem for rational normal curves 

Alessio Caminata and Luca Schaffler Université de Neuchâtel, University of Massachusetts Amherst

## Main goal \& motivation

Pascal's theorem gives a synthetic geometric condition for six points in $\mathbb{P}^{2}$ to lie on a conic (see Figure 1 on the right). In higher dimension, one could ask: is there a coordinate-free condition for $d+4$ points in $\mathbb{P}^{d}$ to lie on a degree $d$ rational normal curve (rnc)? In this work we find many of these conditions by writing in the GrassmannCayley algebra the defining equations of the parameter space of $d+4$ ordered points in $\mathbb{P}^{d}$ that lie on a rnc.

Grassmann-Cayley algebra
Def: The Grassmann-Cayley algebra of a vector space $V$ is its exterior algebra together with the meet and join operations: $\wedge, \vee$.
Ex: $a, b, c \in \mathbb{P}^{2}$ are aligned $\Leftrightarrow a \vee b \vee c=0$.
Pascal's theorem: $a, b, c, d, e, f \in \mathbb{P}^{2}$ lie on a conic if and only if
$\left|\begin{array}{cccccc}a_{0}^{2} & b_{0}^{2} & c_{0}^{2} & d_{0}^{2} & e_{0}^{2} & f_{0}^{2} \\ a_{1}^{2} & b_{1}^{2} & c_{1}^{2} & d_{1}^{2} & e_{1}^{2} & f_{1}^{2} \\ a_{2}^{2} & b_{2}^{2} & c_{2}^{2} & d_{2}^{2} & e_{2}^{2} & f_{2}^{2} \\ a_{0} a_{1} & b_{0} b_{1} & c_{0} c_{1} & d_{0} d_{1} & e_{0} e_{1} & f_{0} f_{1} \\ a_{0} a_{2} & b_{0} b_{2} & c_{0} c_{2} & d_{0} d_{2} & e_{0} e_{2} & f_{0} f_{2} \\ a_{1} a_{2} & b_{1} b_{2} & c_{1} c_{2} & d_{1} d_{2} & e_{1} e_{2} & f_{1} f_{2}\end{array}\right|=0$.

This can be rewritten (!) as
$|a b c||a d e||b d f||c e f|-|a b d||a c e||b c f||d e f|=0$.
In the Grassmann-Cayley algebra it becomes: $((a \vee b) \wedge(d \vee e)) \vee((a \vee f) \wedge(d \vee c)) \vee((e \vee f) \wedge(b \vee c))=0$.
The geometric interpretation of the above expression gives Pascal's theorem (see Figure 1).
Cayley factorization problem: There is no general algorithm to rewrite a polynomial in the Grassmann-Cayley algebra.

## Pascal's theorem



Figure 1: $a, \ldots, f \in \mathbb{P}^{2}$ lie on a conic if and only if $\overline{a b} \cap \overline{d e}$, $\overline{a f} \cap \overline{d c}, \overline{e f} \cap \overline{b c}$ are aligned.
$d+4$ points on degree $d$ rnc
Def: $V_{d, n}=$ the closure of the locus in $\left(\mathbb{P}^{d}\right)^{n}$ of $n$-tuples of distinct points that lie on a rnc.
Idea: If we have the equations for $V_{d, d+4}$, then we could attempt to rewrite them in the Grassmann-Cayley algebra.
Thm [1]: $V_{d, d+4}$ union the locus of degenerate point configurations is cut out by the equations $\psi_{I}=0$ for $I=\left\{i_{1}, \ldots, i_{6}\right\} \subseteq$ $\{1, \ldots, d+4\}$, where $\psi_{I}$ is obtained from $\left[i_{1} i_{2} i_{3}\right]\left[i_{1} i_{4} i_{5}\right]\left[i_{2} i_{4} i_{6}\right]\left[i_{3} i_{5} i_{6}\right]-\left[i_{1} i_{2} i_{4} i_{4}\left[i_{1} i_{3} i_{5}\right]\left[i_{2} i_{3} i_{6}\right]\left[i_{4} i_{5} i_{6}\right]\right.$ by operating the following substitution:

$$
\left[i i_{m} i_{n}\right] \mapsto(-1)^{S\left(i_{i}, i_{m} i_{n}\right)}\left|\left\{i i_{i} i_{m} i_{n}\right\}^{c}\right|
$$

## Proof of main theorem

(1) Start from the Grassmann-Cayley algebra expression (some joins are omitted)

$$
\begin{aligned}
& \left(P_{i_{1}} P_{i_{2}} \wedge P_{i_{4}} P_{i_{5}} P_{j_{1}} \cdots P_{j_{d-2}}\right) \\
& \vee\left(P_{i_{2}} P_{i_{3}} \wedge P_{i_{5}} P_{i_{6}} P_{j_{1}} \cdots P_{j_{d-2}-2}\right) \\
& \vee\left(P_{i_{3}} P_{i_{4}} \wedge P_{i_{6}} P_{i_{1}} P_{j_{1}} \cdots P_{j_{d-2}-2}\right) \vee P_{j_{1}} \cdots P_{j_{d-2}}=0 .
\end{aligned}
$$

(2) Expand it using the definitions of $\wedge$ and $\vee$.
(3) Use appropriate syzygies to prove that what we obtained is equivalent to $\psi_{I}=0$.
Rmk: We find many different expressions equivalent to (1), giving distinct reformulations of the main theorem.


Figure 2: Seven points in $\mathbb{P}^{3}$ on a twisted cubic. The three circled points and $P_{7}$ are coplanar. $\Pi_{i j k}$ denotes the plane containing $P_{i}, P_{j}, P_{k}$.

## Main theorem (CS, 2019, [2])

Let $P_{1}, \ldots, P_{d+4} \in \mathbb{P}_{\mathbb{C}}^{d}$ be points in general linear position. Then $P_{1}, \ldots, P_{d+4}$ lie on a rational normal curve if and only if for every $I=\left\{i_{1}<\cdots<i_{6}\right\} \subseteq\{1, \ldots, d+4\}, I^{c}=\left\{j_{1}<\cdots<\right.$ $\left.j_{d-2}\right\}$, the following $d+1$ points lie on a hyperplane:

- The intersection of the line $P_{i_{1}} P_{i_{2}}$ with the hyperplane $P_{i_{4}} P_{i_{5}} P_{j_{1}} \cdots P_{j_{d-2}}$;
- The intersection of the line $P_{i_{2}} P_{i_{3}}$ with the hyperplane $P_{i_{5}} P_{i_{6}} P_{j_{1}} \cdots P_{j_{d-2}}$;
- The intersection of the line $P_{i_{3}} P_{i_{4}}$ with the hyperplane $P_{i_{1}} P_{i_{6}} P_{j_{1}} \cdots P_{j_{d-2}}$;
- The points $P_{j_{1}}, \ldots, P_{j_{d-2}}$.
(See Figure 2 for a graphical visualization of this condition for $d=3$ and $I=\{1, \ldots, 6\}$.)


## UMassAmherst

Application to twisted cubics
Thm (H. White, 1915): Let $P_{1}, \ldots, P_{7}$ be points on a twisted cubic. Let $H_{1}, \ldots, H_{7}$ be planes whose union contains the 21 lines spanned by the seven points. Then $H_{1}, \ldots, H_{7}$ osculate a second twisted cubic.

Thm (CS, 2019): With the above notation, the following planes intersect at a point contained in the plane $H_{7}$ :

- $H_{1} \cap H_{2}+H_{4} \cap H_{5} \cap H_{7}$;
- $H_{2} \cap H_{3}+H_{5} \cap H_{6} \cap H_{7}$;
- $H_{3} \cap H_{4}+H_{6} \cap H_{1} \cap H_{7}$.


## Future project

Consider the embedding $v: \mathbb{P}^{3} \xrightarrow{\mathcal{O}(2)} \mathbb{P}^{9}$. $p_{1}, \ldots, p_{10} \in \mathbb{P}^{3}$ lie on a quadric $\Leftrightarrow$ the $10 \times 10$ determinant $\left|v\left(p_{1}\right) \cdots v\left(p_{10}\right)\right|$ is zero. Rewriting this determinant in the Grassmann-Cayley algebra is called the Turnbull-Young problem. We plan to use the techniques we developed to work on this problem.

## References

[1] A. Caminata, N. Giansiracusa, H.-B. Moon, and L. Schaffler. Equations for point configurations to lie on a rational normal curve. Adv. Math 340 (2018), 653 -683
2] A. Caminata and L. Schaffler. A Pascal's theorem for rational normal curves. Preprint (submitted), arXiv:1903.00460
[3] H. White. Seven points on a twisted cubic curve. Proceedings of the 8, pp. 464-466, 1915 .

## Link to paper - Contact



