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1 Introduction

Our main references are [CLS11, Ful93]. In what follows, k will be an algebraically
closed field. Toric varieties are important examples of algebraic verieties that can be de-
scribed completely combinatorially. The combinatorics behind toric varieties is the com-
binatorics of cones and fans.

Notation 1.1. In what follows, N denotes the lattice Zn, and M := Hom(N,Z) ∼= Zn.
We write NR = N ⊗ R and MR = M ⊗ R for short.

Definition 1.2. A cone σ ⊆ NR is a convex subset satisfying the following two properties:

1. For all u, v ∈ σ, u+ v ∈ σ;

2. For all u ∈ σ and r ∈ R≥0, ru ∈ σ.

The cone σ is pointed provided it contains no lines. We say σ is rational polyhedral if it
can be written in the form {

m∑
i=1

rivi

∣∣∣∣∣ ri ∈ R≥0

}
,

for some vi ∈ NQ. From now on, cone means pointed rational polyhedral cone.

Definition 1.3. If σ ⊆ NR is a cone, then we denote by σ∨ ⊆MR its dual. Explicitly,

σ∨ = {m ∈MR | m(x) ≥ 0, ∀x ∈ σ}.

Let us see through an example how a variety can arise from the datum of a cone σ ⊆ NR.
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Example 1.4. Let n = 2. In NR, consider the cone σ generated by (2,−1) and (0, 1). We
can construct the k-algebra

k[xm | m ∈ σ∨ ∩M ] = k[x(1,0), x(1,2), x(1,1)].

If a, b, c are algebraically independent variables, consider the homomorphism of k-algebras
ϕ : k[a, b, c] → k[x(1,0), x(1,2), x(1,1)] obtained by extending a 7→ x(1,0), b 7→ x(1,2), and c 7→
x(1,1). By the first homomorphism theorem we see that

k[x(1,0), x(1,2), x(1,1)] ∼= k[a, b, c]/(ab− c2).

Hence, we have the coordinate algebra of the quadric cone Uσ = Z(ab − c2) ⊆ A3. Uσ is
our very first example of affine toric variety. Observe that Uσ is singular, but normal.
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Figure 1: On the left, the cone σ∨ in Example 1.4 and lattice points inside. On the right
the resulting affine toric variety Uσ.

This affine variety has a very important feature which is intrinsically related to the way
it arose from the cone.

1. The k-algebra k[xm | m ∈M ] is the coordinate algebra of what is called 2-dimensional
torus, which is denoted by G2

m (as a set, this is nothing else than (k\{0})2). This is an
affine variety which has the structure of a group. The multiplication G2

m×G2
m → G2

m

is given by componentwise multiplication, and it is induced by the natural k-algebras
homomorphism

k[xm | m ∈M ]→ k[xm | m ∈M ]⊗k k[xm | m ∈M ].

We also have an inclusion of k-algebras

k[xm | m ∈ σ∨ ∩M ] ⊆ k[xm | m ∈M ].

Dually, this induces an open embedding G2
m ⊆ Xσ. So Uσ contains a dense open

subtorus.
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2. The natural morphism of k-algebras

k[xm | m ∈ σ∨ ∩M ]→ k[xm | m ∈M ]⊗k k[xm | m ∈ σ∨ ∩M ],

dually induces a group action

G2
m × Uσ → Uσ,

extending the action of G2
m on itself.

2 Definition of toric variety

Definition 2.1. The standard n-dimensional torus Gn
m is the affine open subset of An

of points with nonzero coordinates. Gn
m has a group structure given by componentwise

multiplication. This group operation can also be viewed as the dual of the morphism at
level of coordinate algebras

k[xm | m ∈ Zn]→ k[xm | m ∈ Zn]⊗k k[xm | m ∈ Zn].

A torus T is an affine algebraic group which is isomorphic to Gn
m as an algebraic group.

Definition 2.2. A toric variety is a variety X containing a torus T as a Zariski dense
open subset such that the action of T on itself extends to an algebraic action of T on X.

Example 2.3. Gn
m,An, and X in Example 1.4 are examples of toric varieties.

But now it seems that we forgot about the cones! In what follows, we show that there
is a correspondence between normal affine toric varieties and rational polyhedral cones.

3 Normal affine toric varieties and cones

Let σ ⊆ NR be a rational polyhedral cone. In the Introduction, we illustrated in an
example how to construct a normal affine toric variety Uσ. For the general case, the main
problem is to guarantee that k[xm | m ∈ σ∨ ∩M ] is a finitely generated k-algebra. But
this is the content of Gordan’s Lemma.

Therefore, we will focus on the other direction. Let X be an n-dimensional affine toric
variety with open subtorus T ⊆ X. Let M be the character group of T , which is

M = Hom(T,Gm) ∼= Zn.

The open inclusion induces an injection of k-algebras k[X] ↪→ k[xm | m ∈M ]. Let

S = {m ∈M | xm ∈ k[X]}.
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Clearly, S is a commutative monoid. One can show that k[X] = k[xm | m ∈ S] (from this
follows that S is finitely generated). Let C ⊆MR be the cone generated by S. Then

C ∩M = S.

This equality is possible because we assumed that X is normal. More precisely, X
normal implies that S is saturated (saturated means that if m ∈M,a ∈ Z>0, and am ∈ S,
then m ∈ S). In conclusion, k[X] = k[xm | m ∈ C ∩M ]. Hence, X ∼= Uσ, where σ∨ = C.

4 Toric varieties from fans

Definition 4.1. A fan Σ is a collection of finitely many cones in NR such that the following
properties are satisfied:

1. If σ ∈ Σ and τ ⊆ σ is a face, then τ ∈ Σ;

2. If σ1, σ2 ∈ Σ, then σ1 ∩ σ2 is a face of both σ1 and σ2.

Theorem 4.2. Let Σ be a fan. Then one can construct a normal separated toric variety
XΣ by gluing the normal affine toric varieties Uσ, σ ∈ Σ, as follows. If σ1, σ2 ∈ Σ, then
Uσ1 and Uσ2 are glued along Uσ1∩σ2. Every normal separated toric variety arises this way
(for this, we need Sumihiro’s theorem).

•(−1, r)

Figure 2: From left to right, the fans in NR for P2,P1 × P1, and Fr.

Theorem 4.3 (Orbit-Cone Correspondence). Consider a toric variety XΣ with torus T .
Then there is a bijective correspondence between cones in Σ and T -orbits in XΣ. If O(σ)
is the orbit corresponding to σ, then dim(O(σ)) = n− dimσ.

Definition 4.4. Consider a toric variety XΣ with torus T and denote by Σ(1) the subset
of rays in Σ. From the Orbit-Cone Correspondence Theorem, we have that ρ ∈ Σ(1)
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corresponds to a T -orbit O(ρ). Define Dρ to be the Zariski closure of O(ρ) inside XΣ.
Then Dρ is a T -invariant divisor, and the sum∑

ρ∈Σ(1)

Dρ,

is called the toric boundary of XΣ.

5 The canonical class of a toric variety

Theorem 5.1. For a toric variety XΣ, we have that

KXΣ
∼ −

∑
ρ∈Σ(1)

Dρ.

Proof. We provide a proof under the assumption that XΣ is smooth. Let T ⊆ XΣ be the
dense open torus. We have the following T -invariant regular differential form on T :

ω =
dz1

z1

∧ . . . ∧ dzn
zn

.

We can view ω as a rational differential form on XΣ. By definition,

KXΣ
∼ div(ω).

Since ω is T -invariant, div(ω) must be supported on the toric boundary. Therefore, given
ρ ∈ Σ(1), we just have to determine the order of vanishing of ω along Dρ. Since XΣ is
smooth, at a general point of Dρ the toric variety XΣ is isomorphic to A1 × Gn−1

m , where
Dρ is described by z1 = 0. Then it is clear that ω has a simple pole along Dρ, proving
what we needed.

6 Combinatorics of toric varieties

Remark 6.1. The combinatorics of the fan Σ gives information about the geometry of
the variety XΣ, and conversely. For instance, we have that

1. XΣ is smooth if and only if every cone in Σ is smooth, which means the minimal
generators of σ ∩N form part of a Z-basis for N ;

2. XΣ is complete if and only if Σ is complete, which means
⋃
σ∈Σ σ = NR;

3. XΣ is projective if and only if Σ is the normal fan to a polytope;

4. XΣ is Q-factorial if and only if every cone σ ∈ Σ is simplicial, which means its
minimal generators are linearly independent over R;

5. XΣ is Q-Gorenstein if and only if for all σ ∈ Σ, the minimal integral generators of
the rays of σ lie on a hyperplane.
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