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1 Introduction

Our main references are [CLS1I) [Ful93]. In what follows, & will be an algebraically
closed field. Toric varieties are important examples of algebraic verieties that can be de-
scribed completely combinatorially. The combinatorics behind toric varieties is the com-
binatorics of cones and fans.

Notation 1.1. In what follows, N denotes the lattice Z", and M := Hom(N,Z) = Z".
We write Ng = N @ R and Mr = M ® R for short.

Definition 1.2. A cone 0 C Ny is a convex subset satisfying the following two properties:
1. For all u,v € o, u +v € o;
2. For all u € 0 and r € R, ru € 0.

The cone o is pointed provided it contains no lines. We say o is rational polyhedral if it

can be written in the form
m
{ZTM T € Rzo} )

i=1
for some v; € Np. From now on, cone means pointed rational polyhedral cone.

Definition 1.3. If 0 C Ny is a cone, then we denote by oV C My its dual. Explicitly,
o' ={m e Mg | m(z) >0, Vz € o}

Let us see through an example how a variety can arise from the datum of a cone 0 C Ng.



Example 1.4. Let n = 2. In Ng, consider the cone o generated by (2, —1) and (0,1). We
can construct the k-algebra

k[:pm ’ m E o'v N M] — k[x(1,0)7$(1,2)’x(171)].

If a, b, c are algebraically independent variables, consider the homomorphism of k-algebras
©: kla,b,c] — k[z10 212 £(LD] obtained by extending a +— (9 b — (12 and ¢
(MY By the first homomorphism theorem we see that

I

klz0 202 D] = pig b ] /(ab — ¢?).

Hence, we have the coordinate algebra of the quadric cone U, = Z(ab — ¢*) C A3. U, is
our very first example of affine toric variety. Observe that U, is singular, but normal.

Figure 1: On the left, the cone ¢¥ in Example and lattice points inside. On the right
the resulting affine toric variety U,.

This affine variety has a very important feature which is intrinsically related to the way
it arose from the cone.

1. The k-algebra k[z™ | m € M] is the coordinate algebra of what is called 2-dimensional
torus, which is denoted by G2, (as a set, this is nothing else than (k\{0})?). This is an
affine variety which has the structure of a group. The multiplication G2, x G2, — G2,
is given by componentwise multiplication, and it is induced by the natural k-algebras
homomorphism

Elz™ | m e M] — klz™ | m € M| ®y k[z™ | m € M].
We also have an inclusion of k-algebras
klz™ | me o’ N M| Cklz™ | m e M|.

Dually, this induces an open embedding G2, C X,. So U, contains a dense open
subtorus.



2. The natural morphism of k-algebras
klz™ | m e o’ N M] — k[lz™ | m e M] @ klz™ | m € 0¥ N M|,
dually induces a group action
G2 x U, — Uy,

extending the action of G2, on itself.

2 Definition of toric variety

Definition 2.1. The standard n-dimensional torus G}, is the affine open subset of A"
of points with nonzero coordinates. GJ., has a group structure given by componentwise
multiplication. This group operation can also be viewed as the dual of the morphism at
level of coordinate algebras

klz™ | m € Z") — k[z™ | m € Z"] @ k[z™ | m € Z"].
A torus T is an affine algebraic group which is isomorphic to G}, as an algebraic group.

Definition 2.2. A toric variety is a variety X containing a torus T as a Zariski dense
open subset such that the action of 7" on itself extends to an algebraic action of 7" on X.

Example 2.3. G, A", and X in Example are examples of toric varieties.

But now it seems that we forgot about the cones! In what follows, we show that there
is a correspondence between normal affine toric varieties and rational polyhedral cones.

3 Normal affine toric varieties and cones

Let 0 € Ngr be a rational polyhedral cone. In the Introduction, we illustrated in an
example how to construct a normal affine toric variety U,. For the general case, the main
problem is to guarantee that k[z™ | m € ¢¥ N M] is a finitely generated k-algebra. But
this is the content of Gordan’s Lemma.

Therefore, we will focus on the other direction. Let X be an n-dimensional affine toric
variety with open subtorus 7' C X. Let M be the character group of T', which is

M = Hom(T,G,,) = Z".
The open inclusion induces an injection of k-algebras k[X] < k[z™ | m € M]. Let
S={meM]|z™ e k[X]}.
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Clearly, S is a commutative monoid. One can show that k[X| = K[z | m € S] (from this
follows that S is finitely generated). Let C' C Mg be the cone generated by S. Then

CNM=S5.

This equality is possible because we assumed that X is normal. More precisely, X
normal implies that S is saturated (saturated means that if m € M, a € Z~, and am € 5,
then m € S). In conclusion, k[X] = k[z™ | m € C' N M]. Hence, X = U,, where ¢ = C.

4 Toric varieties from fans

Definition 4.1. A fan Y is a collection of finitely many cones in Ng such that the following
properties are satisfied:

1. If o € ¥ and 7 C ¢ is a face, then 7 € ¥;
2. If 01,09 € X, then 01 N0y is a face of both o7 and o».

Theorem 4.2. Let 3 be a fan. Then one can construct a normal separated toric variety
Xy, by gluing the normal affine toric varieties Uy, o € 3, as follows. If 01,00 € X, then
Uy, and U,, are glued along U, ,ny,. Every normal separated toric variety arises this way
(for this, we need Sumihiro’s theorem,).
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Figure 2: From left to right, the fans in Ny for P2, P! x P!, and F,.
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Theorem 4.3 (Orbit-Cone Correspondence). Consider a toric variety Xs, with torus T
Then there is a bijective correspondence between cones in % and T-orbits in Xx. If O(o)
is the orbit corresponding to o, then dim(O(o)) =n —dimo.

Definition 4.4. Consider a toric variety Xy with torus 7" and denote by (1) the subset
of rays in X. From the Orbit-Cone Correspondence Theorem, we have that p € ¥(1)



corresponds to a T-orbit O(p). Define D, to be the Zariski closure of O(p) inside Xs.
Then D, is a T-invariant divisor, and the sum

2 D»
peX(1)

is called the toric boundary of Xs.

5 The canonical class of a toric variety

Theorem 5.1. For a toric variety Xs, we have that
Kx,~—= Y D,
pEX(1)
Proof. We provide a proof under the assumption that Xy is smooth. Let T" C Xy be the
dense open torus. We have the following T-invariant regular differential form on 7'
dz dzy,
w=—N...N—.
Z1 Zn
We can view w as a rational differential form on Xy. By definition,
Kx, ~ div(w).
Since w is T-invariant, div(w) must be supported on the toric boundary. Therefore, given
p € X(1), we just have to determine the order of vanishing of w along D,. Since Xy is
smooth, at a general point of D, the toric variety Xy is isomorphic to A' x G, where

D, is described by z; = 0. Then it is clear that w has a simple pole along D,, proving
what we needed. ]

6 Combinatorics of toric varieties

Remark 6.1. The combinatorics of the fan ¥ gives information about the geometry of
the variety Xy, and conversely. For instance, we have that

1. X5 is smooth if and only if every cone in X is smooth, which means the minimal
generators of 0 N N form part of a Z-basis for N;

2. Xy is complete if and only if ¥ is complete, which means |J, .y, 0 = Ng;
3. Xy is projective if and only if ¥ is the normal fan to a polytope;

4. Xy is Q-factorial if and only if every cone o € X is simplicial, which means its
minimal generators are linearly independent over R;

5. Xy is Q-Gorenstein if and only if for all o € ¥, the minimal integral generators of
the rays of ¢ lie on a hyperplane.
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