Reductive, linearly reductive, and geometrically reductive affine algebraic groups

Luca Schaffler University of Georgia

November 28, 2016

We work over an algebraically closed field ${\bf k}$ of arbitrary characteristic.

In this class we studied *reductive* affine algebraic group.

But in a class on Geometric Invariant Theory (GIT), it is more common to work with *linearly reductive* or *geometrically reductive* affine algebraic groups. So the questions are:

- What are these?
- How do they relate to reductive affine algebraic groups?
- Why are they preferred notions in GIT?

向下 イヨト イヨト

Throughout this talk, G denotes an affine algebraic group and $\Bbbk[G]$ is its coordinate (Hopf) algebra.

Definition

G is *reductive* if $R_u(G)$, the unipotent radical of *G*, only consists of the identity $e \in G$. Recall that R(G), the *radical* of *G*, is the unique connected maximal normal solvable subgroup of *G*. $R_u(G)$ consists of the *unipotent* elements *g* in R(G), i.e., given an embedding $G \hookrightarrow GL_n$ for some *n*, g - e is nilpotent.

イロト イポト イヨト イヨト

Definition

Let M be a k-module. A representation of G on M is a natural transformation $\eta: G \to GL_M$. Equivalently, it is a $\Bbbk[G]$ -comodule structure on M, i.e. there exists a k-linear map

 $\rho\colon M\to M\otimes_{\Bbbk} \Bbbk[G],$

satisfying certain compatibility properties.

伺下 イヨト イヨト

Linearly reductive affine algebraic groups

Definition

Let M be a representation of G. Define $M^G \subseteq M$ to be the subset of *invariant vectors*, i.e.

$$M^{G} = \{m \in M \mid \rho(m) = m \otimes 1\}.$$

Definition

G is *linearly reductive* if for any finite dimensional representation *M* of *G* and any nonzero invariant vector $m_0 \in M^G$, there exists a *G*-equivariant <u>linear</u> function $f: M \to \mathbb{k}$ (therefore \mathbb{k} as to be thought of as the trivial representation of *G*) such that $f(m_0) \neq 0$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Proposition

Let G be a finite group such that $Char(\mathbb{k}) \nmid |G|$. Then G is linearly reductive.

Proof.

 $\begin{array}{l} M \text{ finite dimensional representation of } G, \ m_0 \in M^G \text{ nonzero.} \\ \ell \colon M \to \Bbbk \text{ linear function such that } \ell(m_0) \neq 0, \text{ there exists } \ell. \\ \text{Define } f \colon M \to \Bbbk \text{ such that } m \mapsto \ell \left(\frac{1}{|G|} \sum_{g \in G} \eta(g)(m) \right). \\ f \text{ is linear, } G \text{-equivariant, and } f(m_0) = \ell(m_0) \neq 0. \end{array}$

- 4 周 ト - 4 日 ト - 4 日 ト

Examples of linearly reductive affine algebraic groups

Proposition

 \mathbb{G}_m is linearly reductive.

Proof.

Recall $\Bbbk[\mathbb{G}_m] = \Bbbk[t, t^{-1}]$. *M* finite dimensional representation of \mathbb{G}_m , $m_0 \in M^{\mathbb{G}_m}$ nonzero. Define $f: M \to \Bbbk$ such that $f(m_0) = 1$ and then extend it by zero. *f* is linear, $f(m_0) \neq 0$, and it is \mathbb{G}_m -equivariant because it preserves the \mathbb{Z} -grading on *M* and \Bbbk induced by \mathbb{G}_m : $M = \bigoplus_{n \in \mathbb{Z}} M_n$, $M_n = \{m \in M \mid \rho(m) = m \otimes t^n\} \Rightarrow M^{\mathbb{G}_m} = M_0$. \Box

Nonexample

If $Char(\mathbb{k}) > 0$ and $n \ge 2$, then SL_n is not linearly reductive.

イロト イポト イヨト イヨト

Definition

G is geometrically reductive if for any finite dimensional representation M of G and any nonzero invariant vector $m_0 \in M^G$, there exist $d \in \mathbb{Z}_{>0}$ and a G-equivariant homogeneous polynomial function $F \in \text{Sym}^d(M^*)$ such that $F(m_0) \neq 0$.

Observation

Linearly reductive \implies geometrically reductive (d = 1).

・ロン ・回と ・ヨン・

Example

 SL_n is geometrically reductive in any characteristic.

Corollary

Geometrically reductive \implies linearly reductive.

Nonexample

 \mathbb{G}_a is not geometrically reductive in any characteristic.

・ロン ・回と ・ヨン・

Relation with reductive affine algebraic groups

Theorem (Nagata-Miyata (1963))

Geometrically reductive \implies reductive.

Idea of proof.

 $R_u(G)$ is geometrically reductive. Assume by contradiction that $R_u(G) \neq \{e\}$. There exists a surjective map $R_u(G) \rightarrow \mathbb{G}_a$. $R_u(G)/\ker(R_u(G) \rightarrow \mathbb{G}_a)$ is geometrically reductive and isomorphic to \mathbb{G}_a , contradiction.

Theorem (Mumford's conjecture, Haboush's theorem (1975))

Reductive \implies geometrically reductive.

イロト イポト イヨト イヨト

Theorem

If $Char(\mathbb{k}) = 0$, then reductive \implies linearly reductive.

Idea of proof.

It mainly follows from a theorem of Mostow (1956), which says that a connected affine algebraic group G contains a linearly reductive algebraic subgroup R such that $G = R_u(G) \rtimes R$.

- ► In characteristic 0, we have that linearly reductive ⇔ geometrically reductive ⇔ reductive.
- ► In characteristic p > 0, we have that linearly reductive $\stackrel{\text{strict}}{\Rightarrow}$ geometrically reductive \Leftrightarrow reductive.
- ► In GIT, the notion of linear reductivity is preferred to reductivity because it is better behaved when taking quotients in characteristic p > 0.

- (目) - (日) - (日)

Thank you for your attention!

Main references:

- 1 Haboush, W.J.: Reductive groups are geometrically reductive.
- 2 Mukai, S.: An introduction to invariants and moduli.
- 3 Mumford, D.: *Geometric invariant theory*.
- 4 Nagata, M., Miyata, T.: Note on semi-reductive groups.
- 5 Santos, W.F., Rittatore, A.: Actions and invariants of algebraic groups.