Compactifications of moduli of points and lines in the projective plane

Luca Schaffler and Jenia Tevelev

KTH Royal Institute of Technology, University of Massachusetts Amherst

Main goal & motivation

Projective duality identifies the moduli space \mathbf{B}_n parametrizing configurations of n linearly general points in \mathbb{P}^2 with the moduli space $\mathbf{X}(3,n)$ parametrizing configurations of n linearly general lines in $(\mathbb{P}^2)^\vee$. When considering degenerations of such objects, it is interesting to compare the resulting compactifications. The problem of constructing a compactification of \mathbf{B}_n parametrizing degenerate n-pointed central fibers of Mustafin joins was proposed by Gerritzen and Piwek [1]. In this work, we pursue this program and compare the resulting compactification of \mathbf{B}_n with Kapranov's Chow quotient compactification $\overline{\mathbf{X}}(3,n)$ [2].

Kapranov's comp'n $\overline{\mathbf{X}}(r, n)$

- $G^0(r,n) := G(r,n) \cap T$, where $T \subseteq \mathbb{P}^{\binom{n}{r}-1}$ is the maximal torus.
- $V \in G^0(r, n) \Longrightarrow \mathbb{P}(V) \subseteq \mathbb{P}^{n-1}$. The restriction of the n-coordinate hyperplanes of \mathbb{P}^{n-1} gives n linearly general hyperplanes in $\mathbb{P}(V) \cong \mathbb{P}^{r-1}$.
- $\mathbf{X}(r,n) := G^0(r,n)/\mathbb{G}_m^{n-1}$ is the moduli space parametrizing configurations of n linearly general hyperplanes in \mathbb{P}^{r-1} .

Def (Kapranov): Chow quotient comp'n $\overline{\mathbf{X}}(r,n) := G(r,n)/\!/\mathbb{G}_m^{n-1}$.

Thm (Kapranov): $\overline{\mathbf{X}}(2,n) \cong \overline{\mathrm{M}}_{0,n}$.

Thm (Haking–Keel–Tevelev): $\overline{\mathbf{X}}(r, n)$ carries a family of KSBA stable pairs.

Alexeev: Generalization of $\overline{\mathbf{X}}(r,n)$ paramet. weighted hyperplane arrangements.

Gerritzen-Piwek's comp'n $\overline{\mathbf{B}}_n$

- $\mathbf{U}_n \subseteq (\mathbb{P}^2)^n$ open subset parametrizing n-tuples of points in general linear position.
- $\bullet \mathbf{B}_n := \mathbf{U}_n / \mathrm{PGL}_3.$
- $\mathbf{B}_n \cong \mathbf{X}(3, n)$ (Gelfand-MacPherson corr.)
- Consider the embedding

$$\mathbf{B}_n \hookrightarrow \prod_{\substack{\text{Ordered}\\\text{quintuples}\\\text{in }\{1,\dots,n\}}} \mathbb{P}^2,$$

$$[(p_1,\dots,p_n)] \mapsto (\dots,q_v,\dots),$$

where q_v is the image of p_{v_5} under the linear map sending $p_{v_1}, p_{v_2}, p_{v_3}, p_{v_4}$ to

Def: $\overline{\mathbf{B}}_n := \text{Zariski closure of } \mathbf{B}_n \subseteq \prod \mathbb{P}^2.$

Rmk: Analogous construction for \mathbb{P}^1 yields $\overline{\mathbf{X}}(2,n)$ (HKT).

Q: $\overline{\mathbf{B}}_n \cong \overline{\mathbf{X}}(3,n)$? See Main Thm (i).

Rmk: $\overline{\mathbf{B}}_n$ constructed by Gerritzen-Piwek in relation to $Mustafin\ joins$.

Mustafin joins

- $R = \mathbb{C}[[t]], K = Q(R), \mathbb{k} = R/(t) \cong \mathbb{C}.$
- $\Sigma = \{L_1, \dots, L_m\}$ free R-submodules of K^3 of rank 3.
- Define $\mathbb{P}(L_i) = \operatorname{Proj}(\operatorname{Sym}(L_i^{\vee})) \cong \mathbb{P}_B^2$.
- Consider the natural embedding

$$\mathbb{P}^2_K \hookrightarrow \mathbb{P}(L_1) \times \cdots \times \mathbb{P}(L_m).$$

Def: The Mustafin join $\mathbb{P}(\Sigma)$ is the Zariski closure of \mathbb{P}^2_K under the above embedding.

Def: Let $\mathbf{a} = (a_1, \dots, a_n) \colon \operatorname{Spec}(K) \to \mathbf{B}_n$. A lattice L is stable provided $\exists 4$ limits among $\overline{a}_1(0), \dots, \overline{a}_n(0) \in \mathbb{P}(L)_{\mathbb{k}} \cong \mathbb{P}^2$ in g.l.p.

Def: $\Sigma_{\mathbf{a}} := \text{set of stable lattices w.r.t. } \mathbf{a}$ up to scaling by $K \setminus \{0\}$. Examples of central fibers $\mathbb{P}(\Sigma_{\mathbf{a}})_{\mathbb{k}}$ are in the left Figure.

Problem with $\overline{\mathbf{B}}_n$

Claim [1]: There exists $\pi \colon \overline{\mathcal{F}} \to \overline{\mathbf{B}}_n$ such that, for $x \in \overline{\mathbf{B}}_n$,

$$\pi^{-1}(x) \cong \mathbb{P}(\Sigma_{\mathbf{a}})_{\mathbb{k}},$$

where $\mathbf{a} : \operatorname{Spec}(K) \to \mathbf{B}_n$ is an arc such that $\overline{\mathbf{a}} : \operatorname{Spec}(R) \to \overline{\mathbf{B}}_n$ satisfies $\overline{\mathbf{a}}(0) = x$.

Rmk (ST): \exists **a**, **b**: Spec(K) \rightarrow \mathbf{B}_n such that $\overline{\mathbf{a}}(0) = \overline{\mathbf{b}}(0) \in \overline{\mathbf{B}}_6$ and $\mathbb{P}(\Sigma_{\mathbf{a}})_{\mathbb{k}} \ncong \mathbb{P}(\Sigma_{\mathbf{b}})_{\mathbb{k}}$ (see the left Figure).

Alternative comp'n of \mathbf{B}_n

 $\mathbf{H} := multigraded\ Hilbert\ scheme\ of\ (\mathbb{P}^2)^{\binom{n}{4}}.$

Def: $\overline{\mathbf{X}}_{\mathrm{GP}}(3,n) := \text{closure of } \mathbf{B}_n \hookrightarrow \overline{\mathbf{B}}_n \times \mathbf{H}.$ $\overline{\mathcal{M}} \to \overline{\mathbf{X}}_{\mathrm{GP}}(3,n)$ pullback of the family over the regular Hilbert scheme.

Prop (ST): If $\mathbf{a} : \operatorname{Spec}(K) \to \mathbf{B}_n$ and $\overline{\mathbf{a}} : \operatorname{Spec}(R) \to \overline{\mathbf{X}}_{\operatorname{GP}}(3, n)$, then $\overline{\mathbf{a}}^* \overline{\mathcal{M}} \cong \mathbb{P}(\Sigma_{\mathbf{a}})$. Moreover, $\overline{\mathbf{X}}_{\operatorname{GP}}(3, n) \xrightarrow{\operatorname{birat.}} \overline{\mathbf{B}}_n$.

$\overline{\mathbf{X}}_{\mathbf{GP}}(3,6)^{\nu}$ is tropical

 $\mathbf{X}(3,6) \subseteq \mathbb{G}_m^{\binom{6}{3}-1}/\mathbb{G}_m^5 \subseteq Y_{\Sigma(3,6)}$, where $\Sigma(3,6)$ is Speyer–Sturmfels' tropical Grassmannian.

Thm (Luxton): $\overline{\mathbf{X}}(3,6) \cong \text{Zariski closure}$ of $\mathbf{X}(3,6) \subseteq Y_{\Sigma(3,6)}$.

Thm (ST): $\overline{\mathbf{X}}_{\mathrm{GP}}(3,6)^{\nu} \cong \mathrm{Zariski}$ closure of $\mathbf{X}(3,6) \subseteq Y_{\widehat{\Sigma}(3,6)}$ for $\widehat{\Sigma}(3,6) \preccurlyeq \Sigma(3,6)$ obtained by splitting the *bipyramid cones*:

References

- [1] L. Gerritzen and M. Piwek. Degeneration of point configurations in the projective plane. Indag. Math. (N.S.) 2 (1991), no. 1, 39–56.
- [2] M.M. Kapranov. *Chow quotients of Grassmannians. I.* I. M. Gel'fand Seminar, 29–110, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993.
- [3] L. Schaffler and J. Tevelev. Compactifications of moduli of points and lines in the projective plane. Submitted. arXiv:2010.03519

Contacts

lucsch@math.kth.se, http://people.kth.se/~lucsch/
tevelev@math.umass.edu, http://people.math.umass.edu/~tevelev/

Main theorem (ST, 2020, [3])

- (i) Gerritzen-Piwek's $\overline{\mathbf{B}}_n$ and Kapranov's $\overline{\mathbf{X}}(3,n)$ have isomorphic normalizations.
- (ii) There exists a compactification $\mathbf{B}_n \subseteq \overline{\mathbf{X}}_{\mathrm{GP}}(3,n)$ with a proper flat family such that the fiber over $x \in \overline{\mathbf{X}}_{\mathrm{GP}}(3,n)$ is $\mathbb{P}(\Sigma_{\mathbf{a}})_{\mathbb{k}}$, where $\mathbf{a} \colon \mathrm{Spec}(K) \to \mathbf{B}_n$ is an arc such that $\overline{\mathbf{a}}(0) = x$.
- (iii) $\overline{\mathbf{X}}_{GP}(3,5) \cong \overline{\mathrm{M}}_{0.5}$ and $\overline{\mathbf{X}}_{GP}(3,6)^{\nu}$ is a tropical compactification.