The KSBA compactification of the moduli space of $D_{1,6}$ -polarized Enriques surfaces

Luca Schaffler

Department of Mathematics, University of Georgia, Advisor: Prof. V. Alexeev

Main Goal & Motivation

The aim of this research is to find a functorial and combinatorial compactification of the moduli space of Enriques surfaces. Model examples in the case of curves and abelian varieties are $\overline{M}_{g,n}$ and \overline{A}_g^{τ} , where τ is the 2nd Voronoi fan. Compactifications of the moduli space of polarized K3 surfaces received a lot of attention ([2, 3]), which motivates us to consider the case of Enriques surfaces. Here we analyze $D_{1,6}$ -polarized Enriques surfaces.

Background

Def: $D_{1,6} \subset \mathbb{Z} \oplus \mathbb{Z}^6(-1)$ is the sublattice of vectors of even square.

Def: An Enriques surface S is a smooth projective surface such that $2K_S \sim 0$ and $h^0(\omega_S) = h^1(\mathcal{O}_S) = 0$. A $D_{1,6}$ -polarization on S is a primitive embedding $D_{1,6} \subset \operatorname{Pic}(S)$ with additional requirements.

Fact: A $D_{1,6}$ -polarized Enriques surface can be realized as the \mathbb{Z}_2^2 -cover of $\mathrm{Bl}_3\mathbb{P}^2$ branched along the configuration of lines L in Figure 1.

Figure 1: Three pairs of lines L on $Bl_3\mathbb{P}^2$ (toric picture)

Def: A pair (B, D) where B is a variety and D a \mathbb{Q} -divisor on B is stable if

- $K_B + D$ is ample;
- (B, D) is semi-log canonical.

KSBA Compactification

Consider stable pairs $(S, \epsilon R)$: S is a $D_{1,6}$ polarized Enriques surface, $0 < \epsilon \ll 1$ and R is the ramification divisor of $S \to \mathrm{Bl}_3 \mathbb{P}^2$.

- $\overline{M}_{D_{1,6}}^{\nu}$ = normalization of the projective coarse moduli space parametrizing stable pairs $(S, \epsilon R)$ and their degenerations (KSBA compactification).
- $\partial \overline{M}_{D_{1,6}}^{\nu}$ = boundary of $\overline{M}_{D_{1,6}}^{\nu}$ (i.e. the set of points parametrizing reducible pairs).

Goal: Describe $\partial \overline{M}_{D_{1,6}}^{\nu}$ and the degenerations parametrized by it. Relate $\overline{M}_{D_{1,6}}^{\nu}$ with the corresponding Baily-Borel compactification.

Reduction: Equivalent to study stable pairs $(Bl_3\mathbb{P}^2, (\frac{1+\epsilon}{2})L)$.

Baily-Borel Compactification

- $\overline{\mathcal{D}}/\overline{\Gamma}^{BB}$ = Baily-Borel compactification of the period domain \mathcal{D} for $D_{1,6}$ -polarized Enriques surfaces (studied in [4]).
- The boundary $\partial \overline{\mathcal{D}}/\Gamma^{BB}$ consists of two rational 1-cusps and three 0-cusps.

Stratification of $\partial \overline{M}^{ u}_{D_{1.6}}$

Figure 2: Comparison between the boundaries of the KSBA and Baily-Borel compactifications

Figure 3: Combinatorial interpretation of part of $\partial \overline{M}_{D_1}^{\nu}$

Main Theorem (S., 2016, [5])

- (i) $\partial \overline{M}_{D_{1,6}}^{\nu}$ has two divisorial components and one of codimension 3. For the complete stratification of the boundary and the degenerations parametrized by it, see Figure 2.
- (ii) There exists a birational map $\overline{M}^{\nu}_{D_{1,6}} \to \overline{\mathcal{D}/\Gamma}^{BB}$. In a neighborhood of the preimage of the even (resp. odd 2) 0-cusp, $\overline{M}^{\nu}_{D_{1,6}}$ has a toroidal behavior (resp. is isomorphic to Baily-Borel). Otherwise, it is a mixture of toroidal and Baily-Borel. The combinatorics of the toroidal behavior is interpreted in terms of specific polyhedral subdivisions of the unit cube (Figure 3), or in terms of elliptic and maximal parabolic subdiagrams of a certain Coxeter diagram.

Main Ideas for the Proof

- $(Bl_3\mathbb{P}^2, (\frac{1+\epsilon}{2})L) \cong (B, (\frac{1+\epsilon}{2})\Delta|_B)$: $B \subset (\mathbb{P}^1)^3$ divisor of class $(1, 1, 1), \Delta \subset (\mathbb{P}^1)^3$ toric boundary. $((\mathbb{P}^1)^3, B)$ is a stable toric pair of $type \leq Q = [0, 1]^3$.
- \overline{M}_Q^{ν} = normalization of the projective coarse moduli space parametrizing stable toric pairs of type $\leq Q = [0, 1]^3$.
- $\overline{M}_{Q}^{\nu} \to \overline{M}_{D_{1,6}}^{\nu}$ generically given by $(X,B) \mapsto \left(B, \left(\frac{1+\epsilon}{2}\right)\Delta|_{B}\right)$. This describes $\partial \overline{M}_{D_{1,6}}^{\nu}$. (We also show that $\overline{M}_{D_{1,6}}^{\nu} \cong \overline{M}_{Q}^{\nu}/\mathrm{Sym}(Q)$.)
- To extend $\overline{M}_{D_{1,6}}^{\nu} \dashrightarrow \overline{\mathcal{D}}/\overline{\Gamma}^{BB}$ we use Kulikov semistable degenerations of K3 surfaces.

Future Project

I am extending the results to a 10-dimensional family of polarized Enriques surfaces.

References

- [1] Alexeev, V.: Complete moduli in the presence of semiabelian group action. Ann. of Math. (2) 155 (3) (2002), 611–708.
- [2] Alexeev, V., Thompson, A.: Modular compactification of moduli of K3 surfaces of degree 2. Manuscript in preparation (2015).
- [3] Laza, R.: The KSBA compactification for the moduli space of degree two K3 pairs. J. Eur. Math. Soc. (JEMS) 18 (2016), no. 2, 225–279.
- [4] Oudompheng, R.: Periods of an arrangement of six lines and Campedelli surfaces (2010). arXiv:1106.4846
- [5] Schaffler, L.: The KSBA compactification of the moduli space of $D_{1,6}$ -polarized Enriques surfaces (2015). Submitted. arXiv:1608.02564

Link to Paper – Contact

email: luca@math.uga.edu
web: alpha.math.uga.edu/~luca/