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Main Goal & Motivation KSBA Compactification Stratification of @W%m Main Ideas for the Proof
Th.e aim of this ].fesear(.zh is to ﬁnd.a fugc— Consider stable pairs (S,eR): S is a D¢ — e (BLP?, (L) L) = (B, (1) Alp): B C (PY)?
t?ﬂal andd(;(l)mbmator}a___ Compactlﬁcfatlon polarized Enriques surface, 0 < ¢ < 1 and @) €><§ \ divisor of class (1, 1 f) A C (PY3 toric
of the moduli space of Enriques surfaces. : - - . 2 R

| - oP q R is the ramification divisor of S — Bl3lP~. yams - boundary. ((PY)3, B) is a stable toric pair
Model examples in the case of curves and . e Dig ;
abelian varieties are M, , and A,, where * M'p, , = normalization of the projective — of type < Q = [0, 1)"
~is the 2™ Voronoi fan. )Compa)ctfﬁcations coarse moduli space parametrizing stable @ e - Wé = normalization of the projective
of the moduli space of polarized K3 surfaces pairs (5, €R) and their degenerations Aﬁﬁ @ coarse moduli space parametrizing stable
received a lot of attention ([2, 3]), which mo- (KSBA compactification). * @/ N toric pairs of type < @ = [0, 1]°.
tivates us to consider the case of Enriques - OM ?)1)6 = boundary of M ?)176 (Le. the set of N\ » Mg — Mp, generically given by
surfaces. Here we analyze D g-polarized points parametrizing reducible pairs). \ 385, DI (X.B)— (B, (%) Alg). This describes M 39176.
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Enriques surtaces. Goal: Describe 9M 7, and the degenerations D" - (We also show that Mp, = Mq/Sym(Q).)
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parametrized by it. Relate M D, , With the cor- « 1o extend M 216 --+ D/ 77 we use
Background respondlng Bai ly—Borel Compactlﬁcatlon Figure 2: Comparison between the boundaries of the KSBA and Kulikov Semistéble degenerations of K3
Reduction: Equivalent to study stable pairs Baily-Borel compactifications surfaces.
6 . . (BL3P2, (159) L).
Def: D¢ C Z & Z°(—1) is the sublattice of =
vectors of even square. . . . Future Project
Def: An Enriques surface S is a smooth Baily-Borel Compactification -
projective surface such that 2K¢ ~ 0 and I am extending the results to a 10-dimensional
0 — pl — 0 A D ~polarizati family of polarized Enriques surfaces.
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on S is a primitive embedding D; ¢ C Pic(S)
| o , ’ the period domain D for D g-polarized
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(ii) There exists a birational map M p,, — D/I" . In aneighborhood of the preimage of the
Def: A pair (B, D) where B is a variety and even (resp. odd 2) O-cusp, M, = has a toroidal behavior (resp. is isomorphic to Baily-Borel). Link to Paper — Contact
D a Q-divisor on B is stable i Otherwise, it is a mixture of torcndal and Baily-Borel. The combinatorics of the toroidal .
« K+ D is ample: behavior is interpreted in terms of specific polyhedral subdivisions of the unit cube (Figure 3), email: luca@math.uga.cdu
) . o . . Ny . . web: alpha.math.uga.edu/~luca/
or in terms of elliptic and maximal parabolic subdiagrams of a certain Coxeter diagram.

« (B, D) is semi-log canonical.
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