Sul Cono dei 2-cicli effettivi su $\overline{M}_{0,7}$

Luca Schaffler

4 giugno 2015

1 Preliminari e contesto

 $n \geq 3, \; k = \overline{k},$ caratteristica qualsiasi. Farò notare quando dovremo stare attenti alla caratteristica.

L'oggetto della nostra attenzione sarà $\overline{M}_{0,n}$, che è una varietà regolare, connessa, proiettiva, di dimensione n-3. Inoltre, $\overline{M}_{0,n}$ è uno spazio di moduli fine che parametrizza alberi di linee proiettive con n punti marcati, in maniera tale che la condizione di stabilità sia soddisfatta (ogni linea ha almeno tre punti speciali, dove un punto speciale è o un nodo o un punto marcato).

Dato $0 \le k \le n-3$, vogliamo considerare il seguente insieme

$$\left\{ \sum_{\text{finite}} a_i Z_i \mid a_i \in \mathbb{R}, Z_i \subseteq \overline{M}_{0,n} \text{ è un sottoschema chiuso, irriducibile, ridotto e } k\text{-dimensionale } \right\}$$

Gli elementi di questo insieme sono chiamati k-cicli. Su questo insieme possiamo definire la relazione "equivalenza numerica", che denoteremo con " \equiv ". Diremo che due k-cicli α e β sono numericamente equivalenti se $\alpha \cdot \gamma = \beta \cdot \gamma$ per ogni ciclo γ di codimensione k. Il quoziente dell'insieme dei k-cicli modulo la relazione di equivalenza numerica da uno spazio vettoriale reale di dimensione finita denotato da $N_k(\overline{M}_{0,7})$.

All'interno dello spazio vettoriale $N_k(\overline{M}_{0,n})$ vogliamo considerare il cosiddetto cono dei k-cicli effettivi:

$$\operatorname{Eff}_k(\overline{M}_{0,n}) = \left\{ \sum_{\text{finite}} a_i Z_i \mid a_i \in \mathbb{R}_{\geq 0}, Z_i \subseteq \overline{M}_{0,n} \text{ è un sottoschema chiuso } \ldots \right\} /_{\equiv}$$

All'interno di questo cono, nello speciale caso di $\overline{M}_{0,n}$, siede un sottocono speciale generato dagli strati di bordo.

Definizione. Il luogo dei punti su $\overline{M}_{0,7}$ che parametrizzano curve con almeno n-3-k nodi ha dimensione pura uguale a k. Le componenti irriducibili di questo luogo sono chiamati k-strati di bordo. Gli n-4-strati di bordo sono chiamati divisori di bordo.

Notazione. Denotiamo con $V_k(\overline{M}_{0,n})$ il cono generato dai k-strati di bordo su $\overline{M}_{0,n}$.

Riguardo ai coni $V_k(\overline{M}_{0,n})$ è stata posta una domanda famosa:

Domanda di Fulton: (Keel-McKernan) $V_k(\overline{M}_{0,n}) = \text{Eff}_k(\overline{M}_{0,n})$?

Analizziamo questa domanda:

- k = 0, n 3: banalmente vero. Il motivo è che tutti gli 0-cicli sono numericamente equivalenti tra loro, e c'è un unico n 3-ciclo effettivo che è anche un n 3-strato di bordo. Pertanto, d'ora in avanti considereremo 0 < k < n 3.
- $n = 5 \Rightarrow k = 1$. $V_1(\overline{M}_{0,5}) = \text{Eff}_1(\overline{M}_{0,5})$. Segue dalla costruzione di Kapranov di $\overline{M}_{0,n}$ come scoppiamento di \mathbb{P}^{n-3} .
- n = 6.

$$V_1(\overline{M}_{0,6}) = \text{Eff}_1(\overline{M}_{0,6}) \text{ (Keel-McKernan)},$$

$$V_2(\overline{M}_{0,6}) \subsetneq \text{Eff}_2(\overline{M}_{0,6}).$$

Esempi di divisori effettivi che non sono una somma effettiva di divisori di bordo sono stati trovati da Keel e Vermeire. Questi sono chiamati i divisori di Keel e Vermeire, e li denotiamo con δ^{KV} . In seguito si è dimostrato che i divisori di bordo e i divisori di Keel e Vermeire sono sufficienti a generare il cono $\mathrm{Eff}_2(\overline{M}_{0,6})$ (Hassett-Tschinkel, Castravet).

• n = 7.

$$V_1(\overline{M}_{0,7}) = \text{Eff}_1(\overline{M}_{0,7}) \text{ (Keel-McKernan)},$$

 $V_3(\overline{M}_{0,7}) \subsetneq \text{Eff}_2(\overline{M}_{0,7}) \text{ (lemma di sollevamento)},$
 $V_3(\overline{M}_{0,7}) \subsetneq \text{Eff}_3(\overline{M}_{0,7}).$

I divisori di Keel e Vermeire sono definiti su $\overline{M}_{0,n}$ per ogni $n \geq 6$, e mostrano che $V_{n-4}(\overline{M}_{0,7}) \subsetneq \mathrm{Eff}_{n-4}(\overline{M}_{0,7})$. Per n=7, questi non sono sufficienti a generare il cono $\mathrm{Eff}_3(\overline{M}_{0,7})$ assieme ai divisori di bordo. Esempi di ciò sono stati trovati da Castravet-Tevelev, Doran-Giansiracusa-Jensen e Opie (menziona la "hypertree conjecture").

2 Il lemma di sollevamento

Mostreremo che $V_2(\overline{M}_{0,7}) \subsetneq \mathrm{Eff}_2(\overline{M}_{0,7})$. Si consideri il seguente diagramma commutativo

$$\overline{M}_{0,6} \equiv D_{67} \xrightarrow{i} \overline{M}_{0,7}$$

$$\downarrow \pi_7$$

$$\overline{M}_{0,6}.$$

Consideriamo $\delta^{KV} \in \text{Eff}_2(\overline{M}_{0,6}) \setminus V_6(\overline{M}_{0,6})$. Assumiamo per contraddizione che $i_*\delta^{KV} \in V_2(\overline{M}_{0,7})$. Allora $i_*\delta^{KV} = \sum_i a_i Z_i$, dove $a_i \in \mathbb{R}_{\geq 0}$ e gli Z_i sono i 2-strati di bordo su $\overline{M}_{0,7}$. Ma allora

$$\delta^{KV} = \mathrm{id}_* \delta^{KV} = (\pi \circ i)_* \delta^{KV} = \pi_* (i_* \delta^{KV}) = \pi_* \left(\sum_i a_i Z_i \right) = \sum_i a_i \pi_* Z_i,$$

che è una contraddizione in quanto $\pi_* Z_i$ o è zero o è un divisore di bordo su $\overline{M}_{0,6}$. Quindi $V_2(\overline{M}_{0,7}) \subsetneq \text{Eff}_2(\overline{M}_{0,7})$.

Chiameremo $i_*\delta^{KV}$ il sollevamento di δ^{KV} a $\overline{M}_{0,7}$ (ovviamente ci sono molti modi di sollevare). Questa costruzione può essere fatta del tutto in generale, ed in maniera del tutto analoga si può dimostrare il seguente corollario.

Corollario. Dato 1 < k < n-3, allora $V_k(\overline{M}_{0,n}) \subsetneq \mathrm{Eff}_k(\overline{M}_{0,n})$.

Proof. Basta sollevare a $\overline{M}_{0,n}$ un divisore di Keel e Vermeire su $\overline{M}_{0,k+1}$.

Quindi gli unici casi aperti per la domanda di Fulton sono k = 1 e $n \ge 8$. La F-conjecture dice che in questi casi la domanda di Fulton ha una risposta affermativa.

Dopo aver chiarito tutto ciò, ecco cosa vogliamo fare.

Notazione. Denotiamo con $V_2^{KV}(\overline{M}_{0,7})$ il cono generato da $V_2(\overline{M}_{0,7})$ e da tutti i possibili sollevamenti a $\overline{M}_{0,7}$ dei divisori di Keel e Vermeire su $\overline{M}_{0,6}$.

Mostreremo che

$$V_2(\overline{M}_{0,7}) \subsetneq V_2^{KV}(\overline{M}_{0,7}) \subsetneq \text{Eff}_2(\overline{M}_{0,7}).$$

Per fare questo abbiamo bisogno di una descrizione esplicita di $V_2^{KV}(\overline{M}_{0,7})$, e fatto ciò ci serve un esempio di superficie in $\overline{M}_{0,7}$ la cui classe numerica non è contenuta in $V_2^{KV}(\overline{M}_{0,7})$.

3 Descrizione di $V_2(\overline{M}_{0,7})$

I 2-cicli di bordo su $\overline{M}_{0,7}$ corrispondono, secondo la definizione data, a partizioni [7] := $\{1,\ldots,7\} = I \coprod J \coprod K$, dove $2 \leq |I|,|K| \leq 4$ e $1 \leq |K| \leq 3$, modulo l'equivalenza $I \coprod J \coprod K \sim K \coprod J \coprod I$. Denotiamo con $s_{I,J,K}$ il 2-strato di bordo corrispondente alla partizione $I \coprod J \coprod K$. $\sigma_{I,J,K}$ denoterà la classe di equivalenza numerica di $s_{I,J,K}$.

Abbiamo mostrato una formula combinatoriale che produce i numeri di intersezione $\sigma_{I,J,K}$. $\sigma_{L,M,N}$. Questo ci ha permesso di concludere che ci sono 420 distinti $\sigma_{I,J,K}$. Chen e Coskun hanno recentemente mostrato che questi cicli generano raggi estremali di $\mathrm{Eff}_2(\overline{M}_{0,7})$. Parlando di intersezioni, la forma di intersezione bilineare $N_2(\overline{M}_{0,7}) \times N_2(\overline{M}_{0,7}) \to \mathbb{R}$ è nondegenere di segnatura (86, 41).

4 Descrizione di $V_2^{KV}(\overline{M}_{0,7})$

Vogliamo descrivere il sollevamento dei divisori di Keel e Vermeire in maniera esplicita in funzione dei 2-cicli di bordo. Quindi ripercorriamo brevemente la costruzione del sollevamento in maniera più generale. Si scelga un divisore $D_{ab} \subset \overline{M}_{0,7}$ e lo si identifichi con $\overline{M}_{0,([7]\cup\{x\})\setminus\{a,b\}}$. Quindi abbiamo

$$\overline{M}_{0,([7]\cup\{x\})\setminus\{a,b\}} \equiv D_{ab} \stackrel{\iota}{\hookrightarrow} \overline{M}_{0,7}.$$

Ora si assuma che ([7] \cup {x}) \setminus {a, b} = {i, j, k, l, m, x}. Possiamo scrivere i divisori di Keel e Vermeire come combinazione dei divisori di bordo come segue

$$\delta^{KV}_{mx,ij} = \delta_{im} + \delta_{jm} + \delta_{kx} + \delta_{\ell x} + 2\delta_{ijm} - \delta_{mx}.$$

Il divisore di Keel e Vermeire $\delta^{KV}_{mx,ij}$ soddisfa le seguenti simmetrie

$$\delta^{KV}_{mx,ij} = \delta^{KV}_{ij,mx} = \delta^{KV}_{xm,ij} = \delta^{KV}_{mx,ji} = \delta^{KV}_{mx,k\ell},$$

quindi ci sono 15 distinti $\delta_{mx,ij}^{KV}$ possibili. Il sollevamento a $\overline{M}_{0,7}$ di $\delta_{mx,ij}^{KV}$ è dato da

$$\sigma_{ab,m,ij}^{KV} := \iota_* \delta_{mx,ij} = \sigma_{im,jk\ell,ab} + \sigma_{jm,ik\ell,ab} + \sigma_{ij\ell m,k,ab} + \sigma_{ijkm,\ell,ab} + 2\sigma_{ijm,k\ell,ab} - \sigma_{ijk\ell,m,ab}.$$

Magari è sufficiente scrivere

$$\sigma_{ab,m,ij}^{KV} := \iota_* \delta_{mx,ij} = \iota_* \delta_{im} + \ldots = \sigma_{im,jk\ell,ab} + \ldots$$

spiegando come si fa ad ottenere il primo termine.

Lemma Tecnico. Dato $y \in [7]$, sia $\pi_y \colon \overline{M}_{0,7} \to \overline{M}_{0,[7]\setminus \{y\}}$ il morfismo che si dimentica l'etichetta "y". Allora

$$\pi_{y*}\delta_{ij,m,ab}^{KV} \begin{cases} \delta_{mb,ij}^{KV} & \text{se } y = a, \\ \delta_{ma,ij}^{KV} & \text{se } y = b, \\ \delta_{ab} & \text{altrimenti.} \end{cases}$$

Proposizione. Il cono $\mathrm{Eff}_2(\overline{M}_{0.7})$ ha almeno 735 raggi estremali generati da:

- 420 2-strati di bordo $\sigma_{I,J,K}$;
- 315 sollevamenti $\sigma_{ab,m,ij}^{KV}$.

5 Scoppiamenti di \mathbb{P}^2 immersi in $\overline{M}_{0.7}$

Teorema (Castravet-Tevelev). Si considerino $p_1, \ldots, p_n \in \mathbb{P}^2$ e si definisca l'aperto $U := \mathbb{P}^2 \setminus \text{(unione delle linee generate da } p_1, \ldots, p_n)$. Si definisca la mappa

$$F: U \to M_{0,n}, \text{ t.c.}$$

$$p \mapsto [(\mathbb{P}^1; \varphi_p(p_1), \dots, \varphi_p(p_n))],$$

dove $\varphi_p \colon \mathbb{P}^2 \dashrightarrow \mathbb{P}^1$ è la proiezione da p. Allora F si estende in maniera unica

$$\overline{F}: \mathrm{Bl}_{p_1,\ldots,p_n}\mathbb{P}^2 \to \overline{M}_{0,n}.$$

Se p_1, \ldots, p_n non giacciono su una linea o una conica, allora \overline{F} è un'immersione chiusa. Inoltre si sa come calcolare $\overline{F}^*\delta_I$. Una superficie in $\overline{M}_{0,n}$ ottenuta in questo modo sarà chiamata scoppiamento immerso di \mathbb{P}^2 in $\overline{M}_{0,n}$ e p_1, \ldots, p_n sono i suoi punti associati.

Proposizione. I divisori di Keel e Vermeire su $\overline{M}_{0,6}$ possono essere ottenuti come scoppiamenti immersi di \mathbb{P}^2 . Per esempio, il divisore di Keel e Vermeire $\delta^{KV}_{12,34}$ si ottiene scegliendo p_1, \ldots, p_6 in maniera tale che p_i, p_j, p_k giacciono su una linea se e soltanto se $\{i, j, k\} \in \Gamma$, dove

$$\Gamma := \{\{1,3,6\},\{1,4,5\},\{2,4,6\},\{2,3,5\}\}.$$

 Γ è noto in combinatoria come iperalbero irriducibile sull'insieme [6]. Questo è unico a meno di permutazioni. Disegna immagine.

Definizione. Uno scoppiamento immerso di \mathbb{P}^2 in $\overline{M}_{0,7}$ è detto superficie iperalbero se $\exists y \in [7] \text{ t.c. } p_1, \ldots, \widehat{p}_y, \ldots, p_7$ realizza un iperalbero irriducibile sull'insieme $[7] \setminus \{y\}$. Una superficie iperalbero è detta speciale se possiamo trovare tre differenti y con la propriet à richiesta.

Esempio. Disegna configurazione che da luogo ad una superficie iperalbero speciale su $\overline{M}_{0,7}$. Si può mostrare che tutte le possibili superfici iperalbero speciali sono ottenute come permutazioni di questa configurazione. Ne abbiamo 210 in caratteristica diversa da 2 e solamente 30 in caratteristica 2.

Teorema. Sia h la classe di equivalenza numerica di una superficie iperalbero speciale. Allora $h \notin V_2^{KV}(\overline{M}_{0,7})$.

Lemma. Sia h la classe di equivalenza numerica di una superficie iperalbero speciale. Allora $h \notin V_2(\overline{M}_{0,7})$.

Dimostrazione del Lemma. Sia $y \in [7]$ t.c. $p_1, \ldots, \widehat{p_y}, \ldots, p_7$ realizza una un iperalbero irriducibile su $[7] \setminus \{y\}$. Si assuma per contraddizione che $h = \sum \alpha_{I,J,K} \sigma_{I,J,K}$ con $\alpha_{I,J,K} \in \mathbb{R}_{>0}$. Allora

$$\pi_{y*}h = \sum \alpha_{I,J,K}\pi_{y*}\sigma_{I,J,K},$$

dove $\pi_{y*}\sigma_{I,J,K}$ può essere zero o un divisore di bordo su $\overline{M}_{0,6}$. Ma ciò non può essere in quanto $\pi_{y*}h$ è un divisore di Keel e Vermeire.

Dimostrazione del Teorema. Si assuma che per $y \in \{5, 6, 7\}$, $\pi_{7*}h$ è un divisore di Keel e Vermeire. Si assuma per contraddizione che possiamo trovare coefficienti $\alpha_{I,J,K}$, $\beta_{ab,m,ij} \in \mathbb{R}_{\geq 0}$ t.c.

$$h = \sum \alpha_{I,J,K} \sigma_{I,J,K} + \sum_{\{a,b\} \subset [7]} \sum_{i=1}^{15} \beta_{ab,m,ij} \sigma_{ab,m,ij}^{KV}.$$

Si fissi $\beta_{a'b',m',i'j'}$. Mostreremo che $\beta_{a'b',m',i'j'}=0$, e ciò contraddice il lemma. Si assuma senza perdita di generalità che $7 \notin \{a',b'\}$. Allora

$$\pi_{y*}h = \sum \alpha_{I,J,K}\pi_{y*}\sigma_{I,J,K} + \sum_{\{a,b\}\subset[6]} \sum_{i=1}^{15} \beta_{ab,m,ij}\pi_{y*}\sigma_{ab,m,ij}^{KV} + \sum_{a\in[6]} \sum_{i=1}^{15} \beta_{a7,m,ij}\pi_{y*}\sigma_{a7,m,ij}^{KV}.$$

Segue dal lemma tecnico e dall'estremalità dei divisori di Keel e Vermeire che $\beta_{a'b',m',i'j'}=0$, in quanto $\beta_{a'b',m',i'j'}$ è uno degli addendi che appaiono nel coefficiente di $\delta_{a'b'}$.