Programming for mathematical research

Ken Jacobs, Luca Schaffler University of Georgia

July 12, 2016

Motivation

Why would you use a computer to help your research?

Motivation

Why would you use a computer to help your research?

- To build intuition;

Motivation

Why would you use a computer to help your research?

- To build intuition;
- To actually prove a theorem (working case-by-case);

Motivation

Why would you use a computer to help your research?

- To build intuition;
- To actually prove a theorem (working case-by-case);
- To generate supporting examples for your theory.

Good and bad problems for programming

Good kinds of problems:

- Something that involves enumeration of finitely many cases;
- Visualization;
- Something you know there is an efficient package for already.

Good and bad problems for programming

Good kinds of problems:

- Something that involves enumeration of finitely many cases;
- Visualization;
- Something you know there is an efficient package for already.

Bad kinds of problems:

- something which is too simple;
- complicated expressions with many indeterminates;
- too much work to tell the computer how to do it.

Bad problem 1: too easy

Does the homogeneous polynomial

$$
F(X, Y)=3 X^{3} Y+3 X^{2} Y^{2}+X^{4}-6 Y^{4}
$$

factor over $\mathbb{Z}[X, Y]$?

Bad problem 1: too easy

Does the homogeneous polynomial

$$
F(X, Y)=3 X^{3} Y+3 X^{2} Y^{2}+X^{4}-6 Y^{4}
$$

factor over $\mathbb{Z}[X, Y]$?

- F is homogeneous and $Y \nmid F$, so it is enough to consider

$$
G(X):=F(X, 1)=3 X^{3}+3 X^{2}+X^{4}-6
$$

Bad problem 1: too easy

Does the homogeneous polynomial

$$
F(X, Y)=3 X^{3} Y+3 X^{2} Y^{2}+X^{4}-6 Y^{4}
$$

factor over $\mathbb{Z}[X, Y]$?

- F is homogeneous and $Y \nmid F$, so it is enough to consider

$$
G(X):=F(X, 1)=3 X^{3}+3 X^{2}+X^{4}-6
$$

- Reorder the terms

$$
G(X)=X^{4}+3 X^{3}+3 X^{2}-6
$$

Bad problem 1: too easy

Does the homogeneous polynomial

$$
F(X, Y)=3 X^{3} Y+3 X^{2} Y^{2}+X^{4}-6 Y^{4}
$$

factor over $\mathbb{Z}[X, Y]$?

- F is homogeneous and $Y \nmid F$, so it is enough to consider

$$
G(X):=F(X, 1)=3 X^{3}+3 X^{2}+X^{4}-6
$$

- Reorder the terms

$$
G(X)=X^{4}+3 X^{3}+3 X^{2}-6
$$

- Eisenstein's criterion $\rightarrow G(X)$ is irreducible $\rightarrow F(X, Y)$ does not factor!

Bad problem 2: too general

Let $p(z)=a_{d} z^{d}+\ldots+a_{0}$ be a polynomial, and let $p^{(n)}(z)=\underbrace{p \circ p \circ \cdots \circ p}_{n \text { times }}(z)$. For certain k, compute

$$
\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \log \max \left(1,\left|p^{(n)}(k)\right|\right)
$$

Bad problem 2: too general

Let $p(z)=a_{d} z^{d}+\ldots+a_{0}$ be a polynomial, and let $p^{(n)}(z)=\underbrace{p \circ p \circ \cdots \circ p}_{n \text { times }}(z)$. For certain k, compute

$$
\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \log \max \left(1,\left|p^{(n)}(k)\right|\right)
$$

Too general \rightarrow look at special cases:

Bad problem 2: too general

Let $p(z)=a_{d} z^{d}+\ldots+a_{0}$ be a polynomial, and let $p^{(n)}(z)=\underbrace{p \circ p \circ \cdots \circ p}_{n \text { times }}(z)$. For certain k, compute

$$
\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \log \max \left(1,\left|p^{(n)}(k)\right|\right)
$$

Too general \rightarrow look at special cases:

- $p(z)=z^{d}$ or $p(z)=z+t$, and $k=0$, then the limit is 0 .

Bad problem 2: too general

Let $p(z)=a_{d} z^{d}+\ldots+a_{0}$ be a polynomial, and let $p^{(n)}(z)=\underbrace{p \circ p \circ \cdots \circ p}_{n \text { times }}(z)$. For certain k, compute

$$
\lim _{n \rightarrow \infty} \frac{1}{d^{n}} \log \max \left(1,\left|p^{(n)}(k)\right|\right)
$$

Too general \rightarrow look at special cases:

- $p(z)=z^{d}$ or $p(z)=z+t$, and $k=0$, then the limit is 0 .
- $p(z)=z^{d}+t$ and $k=0$ is tractable for a computer

Bad problem 3: too bothersome to ask a computer

Count the number of \mathbb{Z}^{2} lattice points in the region bounded by $y=2 / 3 x+4, y=3 / 2 x-4, y=-2 x+2, y=-1 / 3 x-5$.

Sample problem 1: visualization

Let $p(z)=z^{2}+c$ for $c \in \mathbb{C}$, and define

$$
g(c):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \log \max \left(1,\left|p^{(n)}(0)\right|\right)
$$

Sample problem 1: visualization

Let $p(z)=z^{2}+c$ for $c \in \mathbb{C}$, and define

$$
g(c):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \log \max \left(1,\left|p^{(n)}(0)\right|\right)
$$

Question: How does $g(c)$ vary in c ?

Sample problem 2: how many elements in a group

Consider the following two subgroups of S_{7} :

$$
\begin{gathered}
G_{1}=\{\mathrm{id},(34)(65),(47)(16),(37)(15),(156)(473),(165)(374)\}, \\
G_{2}=\{\mathrm{id},(12)(56),(25)(16),(26)(15)\} .
\end{gathered}
$$

Sample problem 2: how many elements in a group

Consider the following two subgroups of S_{7} :

$$
\begin{gathered}
G_{1}=\{\mathrm{id},(34)(65),(47)(16),(37)(15),(156)(473),(165)(374)\}, \\
G_{2}=\{\mathrm{id},(12)(56),(25)(16),(26)(15)\} .
\end{gathered}
$$

Question: How many elements does the subgroup of S_{7} generated by G_{1} and G_{2} have?

Sample problem 3: rational points on curves

Consider the elliptic curve given in Weierstrass form by

$$
E: y^{2}=x^{3}+8
$$

Sample problem 3: rational points on curves

Consider the elliptic curve given in Weierstrass form by

$$
E: y^{2}=x^{3}+8
$$

Question:

- Over \mathbb{Q}, does the point $P(1,3)$ have infinite or finite order?
- Over $\mathbb{Q}(\sqrt{2})$, does the point $Q(0,2 \sqrt{2})$ have infinite or finite order on E ?

Sample problem 4: ray in a cone?

In \mathbb{R}^{5}, let C be the cone with vertex at the origin and whose extremal rays are generated by

$$
\begin{gathered}
(10,1,3,-1,4),(-3,0.5,5,7,2),(1,6,3,7,11), \\
(9,1,1,3,5),(5,0,1,4,-1),(6,1,2,7,3) .
\end{gathered}
$$

Sample problem 4: ray in a cone?

In \mathbb{R}^{5}, let C be the cone with vertex at the origin and whose extremal rays are generated by

$$
\begin{gathered}
(10,1,3,-1,4),(-3,0.5,5,7,2),(1,6,3,7,11), \\
(9,1,1,3,5),(5,0,1,4,-1),(6,1,2,7,3)
\end{gathered}
$$

Question: Is the vector $(1,1,2,2,3)$ in C or not?

Free software

- Sage;
- GAP;
- Macaulay2;
- LRS, porta;
- Polymake;
- Python;
- C, C++.

Expensive software the department has for you

- Mathematica;
- Matlab;
- Maple;
- Magma;
- Geometer's Sketchpad;
- vlab.uga.edu

Expensive hardware the department / university has for you

- Your office computer (should have all licensed programs pre-installed)
- 6th floor computers - faster processors, more memory; requires access from help@math.uga.edu
- UGA cluster (requires remote access)

Documentation

- Mathematica: http://reference.wolfram.com/language/
- LRS:
http://cgm.cs.mcgill.ca/~avis/C/lrslib/USERGUIDE.html
- Sage: http://doc.sagemath.org/html/en/
- GAP: http://www.gap-system.org/Doc/doc.html
- Polymake: https://polymake.org/doku.php/documentation
- Macaulay2: http://www.math.uiuc.edu/Macaulay2/
- Matlab: http://www.mathworks.com/help/matlab/
- Maple: http://www.maplesoft.com/documentation_center/
- Porta:
http://comopt.ifi.uni-heidelberg.de/software/PORTA/

