|
|
Seminari A.A. 2009-2010 |
|
I Seminari si svolgono il martedì alle 14:30 nell'aula 311
del Dipartimento di Matematica
(salvo diversa indicazione)
|
|
|
Relatore |
Titolo |
Data |
|
|
2009-10/
|
Raffaele Esposito
Università dell'Aquila |
|
21 Maggio 2010 (venerdì) |
|
|
|
Marton Kormos
SISSA - Trieste |
|
26 Gennaio 2010 |
|
|
|
Jeremy Clark
Katholieke Universiteit Leuven |
|
22 Gennaio 2010 (venerdì) |
|
|
|
Rafael Greenblatt
Rutgers University |
|
15 Gennaio 2010 (venerdì) |
|
|
|
Jérôme Dubail
Institut de Physique Théorique CEA Saclay |
Boundary conformal field theory and loop models |
12 Gennaio 2010 |
|
|
|
Fabio Punzo
Università di Roma "La Sapienza" |
|
18 Dicembre 2009 (venerdì ore 15.00) |
|
|
|
Dario Benedetti
Perimeter Inst. for Theoretical Physics, Waterloo |
|
16 Dicembre 2009 (mercoledì) |
|
|
|
Daniel Yasumasa Takahashi
Universidade de São Paulo |
|
01 Dicembre 2009 |
|
|
|
In Neuroscience, to infer how neurons interact to each other is
an important problem to understand how brain works. Currently, there is no
technique that makes possible to infer the connectivity of more than
hundreds of neurons. As a possible solution to this, we propose as a model
of interaction the Gibbs measure on Zd having long range
interaction and, as the estimation procedure, the l1 regularized
pseudo-maximum likelihood. More specifically, given n independent
realizations in a l1 ball with length L(n) of a Gibbs measure with
unbounded interaction, we propose a statistical algorithm called l1
regularized pseudo-maximum likelihood to estimate and decide which pairwise
potential is zero or not. We prove that we can recover the interaction
neighborhood with probability converging to one as sample size n increases
and L(n) increases as o(n1/3d). We also show that our algorithm is
computationally efficient even for very large number of neurons.
This is a joint work with Enza Orlandi and Antonio Galves.
|
|
|
|
Yuri Kondratiev
Universität Bielefeld |
|
06 Ottobre 2009 |
|
|
---|
|
|