Università degli Studi Roma Tre

          Seminari di Fisica Matematica

Dipartimento di Matematica
 

 

 
 
 
 
 
 
 

Home

Archivio

2018-2019
2017-2018
2016-2017
2015-2016
2014-2015
2013-2014
2012-2013
2011-2012
2010-2011
2009-2010
2008-2009
2007-2008
2006-2007
2005-2006
2004-2005
2003-2004
2002-2003
2001-2002
2009-10/
Seminari A.A. 2009-2010
 
 
I Seminari si svolgono il martedì alle 14:30 nell'aula 311 del Dipartimento di Matematica (salvo diversa indicazione)
 
 
Relatore
Titolo
Data
 
 
 
Raffaele Esposito
Università dell'Aquila
21 Maggio 2010
(venerdì)
 
 
 
Marton Kormos
SISSA - Trieste
26 Gennaio 2010
 
 
 
Jeremy Clark
Katholieke Universiteit
Leuven
22 Gennaio 2010
(venerdì)
 
 
 
Rafael Greenblatt
Rutgers University
15 Gennaio 2010
(venerdì)
 
 
 
Jérôme Dubail
Institut de Physique
Théorique
CEA Saclay
Boundary conformal field theory and loop models
12 Gennaio 2010
 
 
 
Fabio Punzo
Università di Roma
"La Sapienza"
18 Dicembre 2009
(venerdì ore 15.00)
 
 
 
Dario Benedetti
Perimeter Inst. for
Theoretical Physics, Waterloo
16 Dicembre 2009
(mercoledì)
 
 
 
Daniel Yasumasa Takahashi
Universidade
de São Paulo
01 Dicembre 2009
 
 
Abstract
ritorna
In Neuroscience, to infer how neurons interact to each other is an important problem to understand how brain works. Currently, there is no technique that makes possible to infer the connectivity of more than hundreds of neurons. As a possible solution to this, we propose as a model of interaction the Gibbs measure on Zd having long range interaction and, as the estimation procedure, the l1 regularized pseudo-maximum likelihood. More specifically, given n independent realizations in a l1 ball with length L(n) of a Gibbs measure with unbounded interaction, we propose a statistical algorithm called l1 regularized pseudo-maximum likelihood to estimate and decide which pairwise potential is zero or not. We prove that we can recover the interaction neighborhood with probability converging to one as sample size n increases and L(n) increases as o(n1/3d). We also show that our algorithm is computationally efficient even for very large number of neurons. This is a joint work with Enza Orlandi and Antonio Galves.
 
 
 
Yuri Kondratiev
Universität Bielefeld
06 Ottobre 2009