WORKING GROUP ON
"BIRATIONAL GEOMETRY OF THE MODULI SPACE OF CURVES"
Dipartimento
di Matematica (Universit� di Roma Tre), Aula 311
VENERDI, ore 11-13
ACADEMIC YEAR 2012/2013
TALKS
Venerdi 15 Marzo 2013, ore 11:00-13:00
: The log minimal model program for M_g, I (Angelo Lopez)
Venerdi 22 Marzo 2013, ore 11:00-13:00
: The log minimal model program for M_g, II (Angelo Lopez)
Venerdi 5 Aprile 2013, ore 11:00-13:00
: The moduli space of pseudostable curves via GIT of 3-canonical curves (Fabio Felici)
Venerdi 12 Aprile 2013, ore 11:00-13:00
: The moduli space of pseudostable curves via GIT of 4-canonical curves (Fabio Felici);
The moduli space of pseudo-stable curves as the first step in the LMMP for M_g, I (Andrea Bruno).
Venerdi 19 Aprile 2013, ore 11:00-13:00
:
The moduli space of pseudo-stable curves as the first step in the LMMP for M_g, II (Andrea Bruno).
Venerdi 3 Maggio 2013, ore 11:00-13:00
:
The moduli space of h-semistable and c-semistable curves via Hilbert/Chow GIT of 2-canonical curves
(Margarida Melo).
Venerdi 10 Maggio 2013, ore 11:00-13:00
:
The first flip in the log minimal model program for M_g, I
(Margarida Melo).
Venerdi 17 Maggio 2013, ore 11:00-13:00
:
The first flip in the log minimal model program for M_g, II
(Margarida Melo).
Venerdi 24 Maggio 2013, ore 11:00-13:00
:
Local stable reduction for planar curve singularities (Andrea Bruno).
Giovedi 6 Giugno 2013, ore 15:00-17:00
:
Heuristics for the critical values of the log minimal model program for M_g (Filippo Viviani).
PROGRAM
ACADEMIC YEAR 2011/2012
TALKS
Giovedi 9 Febbraio
2012, ore 10:30-12:30 : The Picard group of $\ov{M}_{g,n}$ I
(Filippo Viviani).
Giovedi 23 Febbraio
2012, ore 10:30-12:30 : The Picard group of $\ov{M}_{g,n}$ II
(Filippo Viviani).
Giovedi 1 Marzo 2012, ore 14:00-16:00 :
The Picard group of $\ov{M}_{g,n}$ III
(Filippo Viviani).
Giovedi 8 Marzo 2012, ore
14:00-16:00 : The canonical class and Mumford relation
(Edoardo Sernesi).
Giovedi 15 Marzo 2012, ore
14:00-16:00 : The slope of effective divisors.
Explicit effective divisors and the Kodaira dimension (Edoardo Sernesi).
Giovedi 29 Marzo 2012, ore 10:00-12:00
: Ample and big cone of $\ov{M}_{g,n}$: results and conjectures of
Gibney-Keel-Morrison I (Angelo Lopez).
Giovedi 12 Aprile 2012, ore 10:00-12:00
: Ample and big cone of $\ov{M}_{g,n}$: results and conjectures of
Gibney-Keel-Morrison II (Angelo Lopez).
Giovedi 19 Aprile 2012, ore 14:00-16:00
: Ample and big cone of $\ov{M}_{g,n}$: results and conjectures of
Gibney-Keel-Morrison III (Angelo Lopez).
Giovedi 3 Maggio 2012, ore 13:30-15:30
: The restricted nef cone and the weakly positive cone of $\ov{M}_g$:
an overview of the results of Cornalba-Harris and Moriwaki (Filippo Viviani).
Giovedi 17 Maggio 2012, ore 11:00-13:00
: The weakly positive cone of $\ov{M}_g$:
Moriwaki inequalities (Filippo Viviani).
Lunedi 21 Maggio 2012, ore 10:30-12:30
: The restricted nef cone of $\ov{M}_{g, n}$:
Cornalba-Harris and Cornalba inequalities (Filippo Viviani).
Giovedi 31 Maggio 2012, ore 14:00-16:00
: Counterexamples related to the F-conjecture: Keel-Vermeire example
and Pixton example (Andrea Bruno).
Giovedi 14 Giugno 2012, ore 14:00-16:00
: Lower bounds for the slope of effective divisors
(Andrea Bruno).
PROGRAM
Cones of divisors of
$\ov{M}_{g,n}$.
1. The Picard group of
$\ov{M}_{g,n}$.
References: [AC87], [AC09], [ACG, Chap. XIII, Chap. XIX], [Mor, Chap.
1].
2. The Pseudo-Effective cone via
the slope.
2.1 Lower Bounds via
effective divisors: Brill-Noether divisors, Petri divisors, Koszul
divisors.
References: [HM82], [HM82], [EH87], [Far09c], [Far09a, Sec. 2.2, Sec.
3], [Far09b, Sec. 5], [Mor, Sec. 2.1, 2.2], [CFM].
2.2 Upper bounds via moving
curves.
References: [HM98], [Pan], [Far09b, Sec. 4], [Mor, Sec. 2.3], [CFM].
2.3 Known results on the Kodaira
dimension of $\ov{M}_{g,n}$.
References: [Far09a], [Far09b], [Ver], [Log].
3. The Nef cone.
3.1 The
restricted Nef cone.
References:[CH88], [ACG11, Chap. XIV], [Mor, Sec. 3.1].
3.2 F-conjecture and the Nef
dichotomy.
References: [GKM02], [Mor, Sec. 3.2].
BIBLIOGRAPHY
BOOKS:
[ACG11] E. Arbarello, M. Cornalba, P. A. Griffiths: Geometry of
algebraic curves. Volume II. With a contribution by Joseph Daniel
Harris. Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], 268. Springer, Heidelberg, 2011.
[HM98] J. Harris, I. Morrison: Moduli of curves. Graduate text in
mathematics 187. Springer-Verlag, New York-Heidelberg, 1998.
[Mor] I. Morrison: Mori theory of moduli spaces of stable curves. Book
in preparation
(preliminary draft available at
http://www.projectivepress.com/moduli/moristablecurves.pdf).
SURVEYS:
[AH] J. Alper, D. Hyeon: GIT construction of log canonical models of
$\ov{M}_g$. Preprint available at arXiv:1109:2173.
[AH] J. Alper, D. Hyeon: GIT construction of log canonical models of
$\ov{M}_g$. Preprint available at arXiv:1109:2173.
[CFM] D. Chen, G. Farkas, I. Morrison: Effective divisors on moduli spaces. Preprint available at arXiv:1205.6138.
[Far09a] G. Farkas: The global geometry of the moduli space of curves.
Algebraic geometry�Seattle 2005. Part 1, 125�147, Proc. Sympos. Pure
Math., 80, Part 1,
Amer. Math. Soc., Providence, RI, 2009 (available at
arXiv:math/0612251).
[Far09b] G. Farkas: Birational aspects of the geometry of $M_g$.
Surveys in differential geometry. Vol. XIV. Geometry of Riemann
surfaces and their moduli spaces, 57�110,
Surv. Differ. Geom., 14, Int. Press, Somerville, MA, 2009 (available at
arXiv:0810.0702).
[FS11] M. Fedorchuk, D. I. Smyth: Alternate compactifications of
moduli space of curves. To appear in Handbook of Moduli (G. Farkas and
I. Morrison, editors),
available at arXiv:1012.0329.
[Mor10] I. Morrison: GIT Constructions of Moduli Spaces of Stable
Curves and Maps. Ji, Lizhen (ed.) et al., Geometry of Riemann surfaces
and their moduli spaces.
Somerville, MA: International Press. Surveys in Differential Geometry
14 (2010), 315--369 (available at arXiv:0810.2340).
[Ver] A. Verra: Rational parametrizations of moduli spaces of curves.
To appear in Handbook of Moduli (G. Farkas and I. Morrison, editors),
available at arXiv:1112.6095.
PAPERS:
[AS] V. Alexeev, D. Swinarski: Nef divisors on $\ov{M}_{0,n}$ from GIT.
Preprint available at arXiv:0812.0778.
[AFS] J. Alper, M. Fedorchuk, D. I. Smyth: Singularities with
$\Gm$-action and the log minimal model program for $\ov{M}_g$. Preprint
available at arXiv:1010.3751.
[ASvdW] J. Alper, D. I. Smyth, F. van der Wyck: Weakly proper moduli
stacks of curves. Preprint available at arXiv:1012.0538.
[AC87] E. Arbarello, M. Cornalba: The Picard groups of the moduli
spaces of curves. Topology 26 (1987), 153�-171.
[AC09] E. Arbarello, M. Cornalba: Divisors in the moduli spaces of
curves. Surveys in differential geometry. Vol. XIV. Geometry of Riemann
surfaces and their moduli spaces, 1�22,
Surv. Differ. Geom., 14, Int. Press, Somerville, MA, 2009 (available at
arXiv:0810.5373).
[CH88] M. Cornalba, J. Harris: Divisor classes associated to families
of stable varieties, with applications to the moduli space of curves.
Ann. Sci. \'Ecole Norm. Sup. (4) 21 (1988), 455�475.
[EH87] D. Eisenbud, J. Harris: The Kodaira dimension of the
moduli space of curves of genus $\geq 23$. Invent. Math. 90 (1987),
359�387.
[Far09c] G. Farkas: Koszul divisors on moduli spaces of curves. Amer.
J. Math. 131 (2009), 819�867 (available at arXiv:math/0607475).
[Fed11] M. Fedorchuk: Moduli of weighted pointed stable curves and log
canonical models of $\ov{M}_{g,n}$. Math. Res. Lett. 18 (2011), 663�675
(available at arXiv:1004.4938).
[Fed] M. Fedorchuk: Moduli spaces of hyperelliptic curves with A and D
singularities. Preprint available at arXiv:1007.4828.
[FS11] M. Fedorchuk, D. I. Smyth: Ample divisors on moduli spaces of
pointed rational curves. J. Algebraic Geom. 20 (2011), 599�629
(available at arXiv:0810.1677).
[GJM] N. Giansiracusa, D. Jensen, H.-B. Moon: GIT Compactifications of
$M_{0,n}$ and Flips. Preprint available at arXiv:1112.0232.
[GKM02] A. Gibney, S. Keel, I. Morrison: Towards the ample cone of $\ov
M_ {g,n}$. J. Amer. Math. Soc. 15 (2002), 273-294 (available at
arXiv:math/0006208).
[HM90] J. Harris, I. Morrison: Slopes of effective divisors on the
moduli space of stable curves. Invent. Math. 99 (1990), 321�355.
[HM82] J. Harris, D. Mumford: On the Kodaira dimension of the moduli
space of curves. With an appendix by William Fulton. Invent. Math. 67
(1982), 23�88.
[Has03] B. Hassett: Moduli spaces of weighted pointed stable curves.
Adv. Math. 173 (2003), 316�352 (available at arXiv:math/0205009).
[HH09] B. Hassett, D. Hyeon: Log canonical models for the moduli space
of curves: first divisorial contraction. Trans. Amer. Math.
Soc. 361 (2009), 4471--4489
(available at arXiv:math/0607477).
[HH] B. Hassett, D. Hyeon: Log canonical models for the moduli space of
curves: the first flip. Preprint available at arXiv:0806.3444.
[Hye] D. Hyeon: An outline of the log minimal model program for the
moduli space of curves. Preprint available at arXiv:1006.1094.
[HK00] Y. Hu, S. Keel: Mori dream spaces and GIT. Dedicated to William
Fulton on the occasion of his 60th birthday. Michigan Math. J. 48
(2000), 331�348.
[HM10] D. Hyeon, I. Morrison: Stability of Tails and 4-Canonical
Models. Math. Res. Lett. 17 (2010), 721--729
(available at arXiv:0806.1269).
[KM10] Y.-H. Kiem, H.-B. Moon: Moduli spaces of weighted pointed stable
rational curves via GIT. Preprint available at arXiv:1002.2461.
[Log03] A. Logan: The Kodaira Dimension of Moduli Spaces of Curves with
Marked Points. American Journal of Mathematics 125 (2003),
105--138.
[Moo1] H.-B. Moon: Log canonical models for the moduli space of pointed
stable rational curves. Preprint available at arXiv:1101.1166.
[Moo2] H.-B. Moon: Log canonical models for $\ov{M}_{g,n}$. Preprint
available at arXiv:1111.5354.
[Pan] R. Pandharipande: Descendent bounds for effective divisors on the
moduli space of curves. Preprint available at arXiv:0805.0601.
[Sch91] D. Schubert: A new compactification of the moduli space of
curves. Compositio Math. 78 (1991), 297--313.
[Smy] D. I. Smyth: Towards a classification of modular
compactifications of the moduli space of curves (with an appendix of J.
Hall). Preprint available at arXiv:0902.3690.
[Smy11] D. I. Smyth: Modular compactifications of the space of pointed
elliptic curves I. Compositio Math. 147 (2011), 877--913 (available at
arXiv:0808.0177).
[Smy12] D. I. Smyth: Modular compactifications of the space of pointed
elliptic curves II. To appear in Compositio Math., available at
arXiv:1005.1083.
[vdW10] F. van der Wyck: Moduli of singular curves and crimping. Ph.D.
thesis, Harvard, 2010.