I shall discuss applications of Koszul cohomology and rank two Brill-Noether theory to the intersection theory of the moduli space of curves. For instance, one can construct extremal divisors in M_g whose points are characterized in terms of existence of certain rank two vector bundles. I shall then explain how these subvarieties of M_g can be thought of as failure loci of an interesting prediction of Mercat in higher rank Brill-Noether theory. |