Some connected components of a moduli space are mundane in the sense that they are distinguished only by obvious topological invariants or have no special characteristics. Others are more alluring and unusual either because they are not detected by primary invariants, or because they have special geometric significance, or both. In this talk, I will describe examples of such special components in moduli spaces of G-Higgs bundles on closed Riemann surfaces or, equivalently, moduli spaces of surface group representations into a semisimple Lie group G. These special components, which occur only for certain groups, generalize Teichmüller space and are the main object of study of higher Teichmüller theory. |

Torna alla pagina dei seminari