PUBBLICAZIONI e PREPRINTS
(N.B. Il link a MathSciNet é
disponibile solo per gli abbonati)
60. V.
Buttinelli, A.F. Lopez, R. Vacca
On the
connectedness of some degeneracy loci and of
Ulrich subvarieties
Preprint 2025
(arXiv:2512.0228).
59.
A.F. Lopez, D. Raychaudhury
A
lower bound on the Ulrich complexity of
hypersurfaces
Preprint 2025 (arXiv:2503.13396).
58.
A.F. Lopez, D. Raychaudhury
On partially
ample Ulrich bundles
Advances in
Geometry 25 (2025), n. 4, 529-533.
57. A.F. Lopez
On varieties with
Ulrich twisted normal bundles
Perspectives on four
decades of Algebraic Geometry, volume 2. In memory
of Alberto Collino.
Progress in
Mathematics 352. Birkhäuser 2025. ![[pdf]]()
56.
A.F. Lopez, R. Muñoz, J.C. Sierra
On the
classification of non big Ulrich vector bundles on
fourfolds
Annali della
Scuola Normale Superiore, Classe di Scienze (5) 26
(2025), n. 2, 707-755. ![[pdf]]()
55. A.F. Lopez, D. Raychaudhury
Non-existence of
low rank Ulrich bundles on Veronese varieties
Preprint 2024 (arXiv:
2406.08162).
(Mathematica
codes)
54. A.F. Lopez, D. Raychaudhury
Ulrich
subvarieties and the non-existence of low rank
Ulrich bundles on complete intersections
Preprint 2024 (arXiv:
2405.01154). In corso di pubblicazione su
Transactions of the American Mathematical
Society.
(Mathematica
codes)
53.
V. Antonelli, G. Casnati,
A.F. Lopez, D.
Raychaudhury
On varieties with
Ulrich twisted conormal
bundles.
Proceedings of the
American Mathematical
Society 152 (2024), n. 11,
4645-4658.
52.
A.F. Lopez, D.
Raychaudhury
On varieties with
Ulrich twisted tangent
bundles
Annali di Matematica
Pura ed Applicata 203
(2024), 1159-1193. ![[pdf]]()
51.
A.F. Lopez, R. Muñoz, J.C.
Sierra
Non-big Ulrich bundles:
the classification on
quadrics and the case of
small numerical
dimension
Manuscripta
Mathematica 174, 517-533
(2024).
50.
A.F. Lopez
Varieties with Ulrich
twisted normal, conormal or tangent bundles
Rendiconti del Seminario Matematico. Università e
Politecnico di Torino 82 (2024), n. 1, 201-208.
![[pdf]]()
49. A.F. Lopez
On the
extendability of projective varieties: a survey.
(with an appendix by Thomas Dedieu).
In: The art of doing
Algebraic Geometry, Trends in Mathematics, dedicated
to Ciro Ciliberto,
Birkhäuser/Springer,
Cham, 2023.
48.
A.F. Lopez, J.C. Sierra
A geometrical view
of Ulrich vector bundles
International
Mathematics Research Notices IMRN (2023), n. 11,
9754-9776.
47. G. Casnati, A.F. Lopez
On a remark by Daniel
Ferrand
Preprint 2022 (arXiv:2212:04158). ![[pdf]]()
46.
A.F. Lopez
On the
positivity of the first Chern class of an
Ulrich vector bundle
Communications
in Contemporary Mathematics 24 (2022), n. 9,
Paper No. 2150071, 22 pp..
45.
A.F. Lopez
Augmented
and restricted base loci of cycles
Annales de
l'Institut Fourier (Grenoble) 72 (2022), n.
1, 435-464. ![[pdf]]()
44. A.F. Lopez, R. Muñoz
On the classification
of non-big Ulrich vector bundles on surfaces and
threefolds
International
Journal of Mathematics 32 (2021), n. 14,
Paper No. 2150111, 18 pp.
43. U. Bruzzo, A. Grassi, A.F.
Lopez
Existence and
density of general components of the
Noether-Lefschetz locus on normal threefolds
International
Mathematics Research Notices 2021, n. 17,
13416-1433. ![[pdf]]()
42. A.F. Lopez
On the existence of
Ulrich vector bundles on some irregular surfaces
Proceedings of
the American Mathematical Society 149 (2021), n. 1,
13-26.
41. C. Ciliberto, A.F. Lopez, R. Miranda
Corrigendum to:
Classification of varieties with canonical curve
section via Gaussian maps on canonical curves
American Journal
of Mathematics 143 (2021), n. 6, 1661-1663.
40. F. Bastianelli, A. Kouvidakis, A.F.
Lopez, F. Viviani
Effective cycles on the symmetric product of a
curve, II: the
Abel-Jacobi faces.
Atti
della Accademia Nazionale dei Lincei. Rendiconti
Lincei-Matematica e Applicazioni, 31 (2020), 839-878.
39. A.F.
Lopez
On the existence of
Ulrich vector bundles on some surfaces of maximal
Albanese dimension.
European Journal of Mathematics 5 (2019), n. 3, 958-963.
![[pdf]]()
38. F. Bastianelli, A.
Kouvidakis, A.F. Lopez, F. Viviani
Effective cycles on the
symmetric product ov a curve, I: the diagonal cone.
(with an appendix by Ben Moonen)
Transactions of the
American Mathematical Society, 372 (2019), n. 12,
8709-8758.
37.
C. Keem, Y.H. Kim, A.F.
Lopez
Irreducibility and
components rigid in moduli of the Hilbert scheme
of smooth curves.
Mathematische
Zeitschrift 292
(2019), n. 3-4, 1207-1222.
36. S.
Cacciola, A.F. Lopez, F. Viviani
Moriwaki divisors and the
augmented base loci of divisors on the moduli space of
curves.
Michigan
Mathematical Journal 65 (2016), n. 3, 533-546.
35. A.F. Lopez
Augmented base loci and restricted volumes on
normal varieties, II: the case of real
divisors.
Mathematical
Proceedings of the Cambridge Philosophical Society 159
(2015), n. 3,
517-527.
34. A.L.Knutsen,
A.F. Lopez
Projective normality and
the generation of the ideal of an Enriques surface.
Advances
in Geometry 15 (2015), n. 3, 339-348.
33. A.L. Knutsen, A.F. Lopez
Brill-Noether
theory of curves on Enriques surfaces II: the
Clifford index.
Manuscripta
Mathematica 147
(2015), n. 1-2, 193-237.
32. S. Boucksom, S. Cacciola, A.F. Lopez
Augmented base loci and restricted volumes on normal
varieties.
Mathematische
Zeitschrift 278 (2014), n.
3-4, 979-985.
31. S. Cacciola, A.F. Lopez
Nakamaye's theorem on log canonical pairs.
Annales
de l'Institut Fourier (Grenoble)
64 (2014), n. 6, 2283-2298.
30. F. Cukierman, A.F. Lopez, I. Vainsencher
Enumeration of surfaces containing an elliptic
quartic curve.
Proceedings
of the American Mathematical Society 142
(2014), n. 10, 3305-3313.
29. A.L. Knutsen, A.F. Lopez, R. Muñoz
On the proof of the genus bound for Enriques-Fano
threefolds.
Journal of the
Ramanujan Mathematical Society 27 (2012), n. 3, 375-395. ![[pdf]]()
28. A.L. Knutsen, A.F. Lopez, R. Muñoz
On the extendability of
projective surfaces
and a genus bound for Enriques-Fano
threefolds.
Journal of Differential
Geometry 88 (2011), n. 3, 483-518.
27. A.F. Lopez, R. Muñoz, J.C. Sierra Garcia
On the extendability of elliptic surfaces of rank two and higher.
Annales de l'Institut Fourier
(Grenoble) 59 (2009), n. 1, 311-346.
26. A.L.Knutsen, A.F. Lopez
Brill-Noether theory of curves on Enriques
surfaces I: the
positive cone and gonality.
Mathematische Zeitschrift 261
(2009), n. 3, 659-690.
25. L. Chiantini, A.F. Lopez
Corrigendum to: Focal loci of families and the genus of curves on surfaces.
Proceedings of the American
Mathematical Society 137 (2009), n. 11, 3951-3951.
24. A.L.Knutsen, A.F. Lopez
Surjectivity of Gaussian maps for curves on
Enriques
surfaces.
Advances in Geometry 7
(2007), n. 2, 215-247.
23. A.L.Knutsen, A.F. Lopez
A sharp vanishing theorem for line bundles on K3
or Enriques surfaces.
Proceedings of the American
Mathematical Society 135 (2007), n. 11, 3495-3498.
22. A.F. Lopez, C. Maclean
Explicit Noether-Lefschetz for arbitary
threefolds.
Mathematical Proceedings of
the Cambridge Philosophical Society 143 (2007),
n. 2, 323-342. ![[pdf]]()
21. L. Giraldo, A.F. Lopez, R. Muñoz
On the existence of Enriques-Fano threefolds of
index greater than one.
Journal of Algebraic
Geometry 13 (2004), n. 1, 143-166.
20. A.F. Lopez, Z. Ran
On the irreducibility of secant cones, and an
application to linear normality.
Duke Mathematical Journal 117
(2003), n. 3, 389-401.
19. L. Giraldo, A.F. Lopez, R. Muñoz
On the projective normality of Enriques surfaces.
Mathematische Annalen 324
(2002), n. 1, 135-158.
18. C. Ciliberto, A.F. Lopez
On the number of moduli of extendable canonical
curves.
Nagoya Mathematical Journal
167 (2002), 101-115.
17. M.C. Chang, A.F. Lopez
A linear bound on the Euler number of threefolds
of Calabi-Yau and of general type.
Manuscripta Mathematica 105
(2001), n. 1, 47-67.
16. L. Chiantini, A.F. Lopez, Z. Ran
Subvarieties of generic hypersurfaces in any
variety.
Mathematical Proceedings of
the Cambridge Philosophical Society 130 (2001),
n. 2, 259-268.
15. C. Ciliberto, A.F. Lopez, R. Miranda
On the Wahl map of plane nodal curves.
In: Proceedings of the
Symposium on Complex Analysis and Algebraic Geometry in
memory of Michael Schneider,
Bayreuth 1998. De Gruyter, Berlin-New York: 2000,
155-163.
14. A.F. Lopez
On the existence of components of the Hilbert scheme with the expected
number of
moduli, II.
Communications in Algebra 27
(1999), n. 7, 3485-3493.
13. L. Chiantini, A.F. Lopez
Focal loci of families and the genus of curves on surfaces.
Proceedings of the American
Mathematical Society 127 (1999), n. 12, 3451-3459.
12. C. Ciliberto, A.F. Lopez, R. Miranda
Classification of varieties with canonical curve section via
Gaussian maps on
canonical curves.
American Journal of
Mathematics 120 (1998), n. 1, 1-21.
11. C. Ciliberto, A.F. Lopez, R. Miranda
Some remarks on the obstructedness of cones over
curves of low genus.
In: Higher dimensional
complex varieties, Proceedings Trento 1994. De Gruyter,
Berlin-New York: 1996,
167-182.
10. C. Ciliberto, A.F. Lopez, R. Miranda
On the corank of Gaussian maps for general embedded K3 surfaces.
Proceedings of the Hirzebruch
65 Conference on Algebraic Geometry (Ramat
Gan, 1993), 141-157.
Israel Mathematical
Conference Proceedings, 9, Bar-Ilan Univ., Ramat Gan, 1996.
9. A.F. Lopez
Surjectivity of Gaussian maps
on curves in \({\mathbb
P}^r\) with general moduli.
Journal of Algebraic Geometry
5 (1996), n. 4, 609-631.
8. A.F. Lopez, P. Pirola
On the curves through a general point of a smooth surface in
\({\mathbb P}^3\).
Mathematische Zeitschrift 219
(1995), n. 1, 93-106.
7. A.F. Lopez
Noether-Lefschetz, space curves and mathematical instantons.
Mathematische Annalen 298
(1994), n. 3, 385-402.
6. C. Ciliberto, A.F. Lopez, R. Miranda
Projective degenerations of K3 surfaces, Gaussian maps, and
Fano threefolds.
Inventiones Mathematicae 114
(1993), n. 3, 641-667.
5. A.F. Lopez
Hodge theory on the Fermat surface and the Picard number of a general
surface in
\({\mathbb P}^3\) containing a plane curve.
Bollettino dell'Unione
Matematica Italiana 7-B (1993), n. 1, 1-22.
4. A.F. Lopez
On the curves lying on a general surface containing a fixed space
curve.
Ricerche di Matematica vol.
XLI (1992), n. 1, 21-40.
3. C. Ciliberto, A.F. Lopez
On the existence of components of the Noether-Lefschetz
locus with given codimension.
Manuscripta Mathematica 73
(1991), n. 4, 341-357.
2. A.F. Lopez
On the existence of components of the Hilbert scheme with the expected
number of moduli.
Mathematische Annalen 289
(1991), n. 3, 517-528.
1. A.F. Lopez
Noether-Lefschetz theory and the Picard group of projective surfaces.
Memoirs of the American
Mathematical Society 89 (1991), n. 438. Google
Books
(volume disponibile su richiesta)